$$
\begin{aligned}
& 2550 \\
& \text { HF } 7 \text { - Part } 2
\end{aligned}
$$

Solutions
(1) (a)

$$
\begin{aligned}
W & =\{\langle a, 0,0\rangle \mid a \in \mathbb{R}\} \\
& =\left\{\langle 0,0,0\rangle,\langle\pi, 0,0\rangle,\left\langle\frac{1}{2}, 0,0\right\rangle,\langle-1,0,0\rangle, \ldots\right\}
\end{aligned}
$$

Let $\langle a, 0,0\rangle$ be in ω. more
Then,
[Note that $\langle 1,0,0\rangle$ is in W also.]
Thus, $\langle 1,0,0\rangle$ spans W.
So, $W=\operatorname{span}(\{\langle 1,0,0\rangle\})$.
Let $\beta=\{\langle 1,0,0\rangle\}$.
β is a linearly independent set since if

$$
c_{1}\langle 1,0,0\rangle=\frac{\langle 0,0,0\rangle}{\overrightarrow{0}}
$$

then

$$
\left\langle c_{1}, 0,0\right\rangle=\langle 0,0,0\rangle
$$

and thus $c_{1}=0$.

Thus, $\beta=\{\langle 1,0,0\rangle\}$ is a lincurly independent set that spans W and hence is a basis for W.
Thus, W is 1 -dimensional.
That is $\operatorname{dim}(\omega)=1$.
(1) (b) Let

$$
\begin{aligned}
& \text { (1) (b) Let } \\
& \begin{aligned}
& W=\{\langle a, b, c\rangle \mid \\
& b=a+c \\
&\text { where } a, b, c \in \mathbb{R}\} \\
&=\left\{\begin{array}{ccc}
\langle 1,2,1\rangle, & \langle 0,1,1\rangle, & \langle\pi, \pi+2,2\rangle, \ldots
\end{array}\right. \\
& \hline \frac{1}{4} \\
& \text { infinitely } \\
& \text { many } \\
& \text { more }
\end{aligned}
\end{aligned}
$$

Suppose $\langle a, b, c\rangle$ is in W.
$50, b=a+c$.

$$
\begin{aligned}
& \text { Then } \begin{aligned}
\langle a, b, c\rangle=\langle a, a+c, c\rangle & =\langle a, a, 0\rangle+\langle 0, c, c\rangle \\
& =a \cdot\langle 1,1,0\rangle+c \cdot\langle 0,1
\end{aligned}
\end{aligned}
$$

Then

Note that $\langle 1,1,0\rangle$ and $\langle 0,1,1\rangle$ are in W.

Thus, $\langle 1,1,0\rangle$ and $\langle 0,1,1\rangle$ span W.
Let $\beta=\{\langle 1,1,0\rangle,\langle 0,1,1\rangle\}$
Then β spans W.
Let's show β is a linearly independent set.
suppose

$$
c_{1}\langle 1,1,0\rangle+c_{2}\langle 0,1,1\rangle=\underbrace{\langle 0,0,0\rangle}_{\overrightarrow{0}}
$$

$$
\begin{aligned}
& \text { hen } \\
& \left\langle c_{1}, c_{1}, 0\right\rangle+\left\langle 0, c_{2}, c_{2}\right\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

Then

So,

$$
\left\langle c_{1}, c_{1}+c_{2}, c_{2}\right\rangle=\langle 0,0,0\rangle
$$

Thus,

$$
\begin{aligned}
c_{1} & =0 \\
c_{1}+c_{2} & =0 \\
c_{2} & =0
\end{aligned}
$$

we see that the only solutions to these equations are $c_{1}=0, c_{2}=0$.
Thus, $\beta=\{\langle 1,1,0\rangle,\langle 0,1,1\rangle\}$ forms ∇
a linearly independent set.
Since $\beta=\{\langle 1,1,0\rangle,\langle 0,1,1\rangle\}$ forms a linearly independent set and spans ω, it is a basis for W.
Thus, w is 2 -dimensional.
That is $\operatorname{dim}(\omega)=2$.
(2) $V=M_{2,2}, F=\mathbb{R}$

$$
\begin{aligned}
& W=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a+b+c=0, a, b, c, d \in \mathbb{R}\right\}
\end{aligned}
$$

Suppose $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in W.
Then $a+b+c=0$.
Thus, $a=-b-c$.
So,

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\left(\begin{array}{cc}
-b-c & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
-b & b \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
-c & 0 \\
c & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right) \\
& =b\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Note that $\underbrace{\left(\begin{array}{cc}-1 & 1 \\ 0 & 0\end{array}\right)}_{\text {in } w}, \underbrace{\left(\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right)}_{\text {in } w}, \underbrace{\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)}_{\text {in } w}$ are in w

$$
\begin{aligned}
& 0+0+0=0
\end{aligned}
$$

Since every element $\left(\begin{array}{ll}a & b \\ c \\ d\end{array}\right)$ in W satisfies

$$
\begin{aligned}
& \text { atisties } \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=b\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) ~
\end{aligned}
$$

we have that

$$
\begin{aligned}
& \text { we have that } \\
& \beta=\left\{\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

Let's show β ir a linearly independent set.
spans w.

Suppose

$$
\left.\begin{array}{c}
\text { her } \\
\left(\begin{array}{cc}
-c_{1} & c_{1} \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
-c_{2} & 0 \\
c_{2} & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & c_{3}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
c_{1}
\end{array}\right)
$$

Then
So, $\left(\begin{array}{cc}-c_{1}-c_{2} & c_{1} \\ c_{2} & c_{3}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
Thus,

$$
\begin{aligned}
-c_{1}-c_{2} & =0 \\
c_{1} & \\
& c_{2} \\
& =0 \\
& c_{3}
\end{aligned}=0
$$

The only solutions to this system are $c_{1}=0, c_{2}=0, c_{3}=0$.

Thus,

$$
\beta=\left\{\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

is a linearly independent set.
Since β is a linearly independent set that spans W, we know that is a basic for ω.
Thus, W is 3 -dimensional. So, $\operatorname{dim}(\omega)=3$.
(3) In HW 6 you showed that

$$
\begin{aligned}
& \text { (3) In HW } 6 \text { you showed } \\
& W=\left\{a+b x+c x^{2}+d x^{3} \left\lvert\, \begin{array}{l}
a+b+c+d=0 \\
a, b, c, d \in \mathbb{R}
\end{array}\right.\right\} \\
& \text { of } V=P_{3} \text { over } F=
\end{aligned}
$$

is a subspace of $V=P_{3}$ over $F=\mathbb{R}$
Find a basis for W and state the dimension of W.
Examples of elements of w

$$
1-x+x^{2}-x^{3}
$$

$$
\begin{aligned}
& \text { because } \\
& 1+(-1)+(1)+(-1)=0
\end{aligned}
$$

Need to solve

$$
a+b+c+d=0
$$

system with leading variable is a free vmiables are b, c, d
$b=t$
where t, s, u
$c=s$ are any real \#s
$d=u$

$$
\begin{aligned}
& a-u \\
& a=-b-c-d=-t-s-u
\end{aligned}
$$

So, if $a+b x+c x^{2}+d x^{3}$ in W then $a+b+c+d=0$ and so

$$
\begin{aligned}
& \text { then } \begin{aligned}
& a+b x+c x^{2}+d x^{3} \\
&=(-t-s-u)+t x+s x^{2}+u x^{3} \\
&=[-t+t x]+\left[-s+s x^{2}\right]+\left[-u+u x^{3}\right] \\
&=t[-1+x]+s\left[-1+x^{2}\right]+u\left[-1+x^{3}\right]
\end{aligned}
\end{aligned}
$$

which is in $\operatorname{span}\left(\left\{-1+x,-1+x^{2},-1+x^{3}\right\}\right)$
Note $-1+x,-1+x^{2},-1+x^{3}$ are in W since their coefficients sum to 0 .
So, $\omega=\operatorname{span}\left(\left\{-1+x,-1+x^{2},-1+x^{3}\right\}\right)$

Let's check if

$$
\begin{aligned}
& \text { et's check it } \\
& -1+x,-1+x^{2},-1+x^{3}
\end{aligned}
$$

are linearly independent.

$$
\begin{aligned}
& \text { Consider } \\
& \begin{aligned}
c_{1}(-1+x)+c_{2}\left(-1+x^{2}\right) & +c_{3}\left(-1+x^{3}\right) \\
& =\underbrace{0+0 x+0 x^{2}+0 x^{3}}_{\overrightarrow{0} \text { in } P_{3}}
\end{aligned}
\end{aligned}
$$

What are the solutions?
We have that the above equation becomes

$$
\begin{aligned}
-c_{1}+c_{1} x-c_{2}+c_{2} x^{2}-c_{3} & +c_{3} x^{3} \\
& =0+0 x+0 x^{2}+0 x^{3}
\end{aligned}
$$

Regrouping gives

$$
\begin{aligned}
& \text { Regrouping gives } \\
& \underbrace{\left(-c_{1}-c_{2}-c_{3}\right)}_{=0}+c_{1} x+\vec{c}_{c_{2}} x^{2}+c_{3} x^{3} \\
& =0 x+0 x^{2}+0 x^{3}
\end{aligned}
$$

Thus,

$$
\begin{align*}
-c_{1}-c_{2}-c_{3} & =0 \tag{1}\\
c_{1} & =0 \tag{2}\\
c_{2} & =0 \tag{3}\\
c_{3} & =0 \tag{4}
\end{align*}
$$

By (2), (3), (4) we get

$$
c_{1}=0, c_{2}=0, c_{3}=0
$$

$$
\begin{aligned}
& \text { Since this is the only solution to } \\
& c_{1}(-1+x)+c_{2}\left(-1+x^{2}\right)+c_{3}\left(-1+x^{3}\right)=0+0 x+0 x^{2} \\
& +0 x^{3}
\end{aligned}
$$

the vectors $-1+x,-1+x^{2},-1+x^{3}$ are linearly independent and thus form a basis for W.

$$
\begin{aligned}
& \text { rem a basis for } W \text {. } \\
& \hline \text { basis for } W
\end{aligned} \text { dimension of } W \text { indepen den } \begin{aligned}
& \text { res }-1+x^{3} \\
& \hline-1+x^{2},-1+3
\end{aligned}
$$

