2550
$H W 6$
Part 2
Solutions

For all the problems we use this theorem from class:
Let V be a vector space over a field F and let W be a subset of V,
W is a subspace of V if and only if the following
three conditions hold:
(1) \vec{O} is in W
(2) If \vec{v} and \vec{w} are in W, then $\vec{v}+\vec{w}$ is in W.
(3) If \vec{z} is in W and α is in F, then $\alpha \cdot \vec{z}$ is in W.
$\mid(a) \quad W=\{\langle a, 0,0\rangle \quad a \in \mathbb{R}$
$(i)\langle 1,0,0\rangle,\langle\pi, 0,0\rangle$

$$
\left\langle-\frac{1}{2}, 0,0\right\rangle,\langle 321,0,0\rangle
$$

(ii) W is a subspace, Let's prove the three conditions.
(1) Setting $a=0$ gives $\langle 0,0,0\rangle$ is in W. So, w contains the zero vector.
(2) Let $\vec{v}, \vec{\omega}$ be in w. Then $\vec{v}=\left\langle a_{1}, 0,0\right\rangle$ and $\vec{\omega}=\left\langle a_{2}, 0,0\right\rangle$ where a_{1} and a_{2} are real numbers. We have $\vec{v}+\vec{w}=\left\langle a_{1}+a_{2}, 0,0\right\rangle$ which is of the form of the elements in W. So $\vec{v}+\vec{w}$ is in W. So, w is closed under vector addition.
(3) Let \vec{z} be in W and α be in $F=\mathbb{R}$. Then $\vec{z}=\langle a, 0,0\rangle$ for some real number a. So, $\alpha \vec{z}=\langle\alpha a, 0,0\rangle$ is in W since its of the form of the elements in W.
So, W is closed under scalar multiplication.

Since W satisfies properties (1), (2), and (3) W is a subspace of \mathbb{R}^{3}.
(b) $w=\{\langle a, 1,2\rangle \mid a$ in $\mathbb{R}\}$
$(i)\langle 1,1,2\rangle,\langle-3,1,2\rangle$

$$
\langle\pi, 1,2\rangle,\langle-\sqrt{2}, 1,2\rangle
$$

(ii) W is not a subspace. For example
condition (1) is not met since $\langle 0,0,0\rangle$ is not of the form $\langle a, 1,2\rangle$.
So, w does not contain the zero vector.
Note: Yo above is enough to be done whit The problem.
conditions (2) or (3) are not true.
For example, $\vec{v}=\langle 0,1,2\rangle$ and $\vec{\omega}=\langle 1,1,2\rangle$ are in w, but $\vec{v}+\vec{w}=\langle 1,2,4\rangle$ is $n_{0} t$ in W since its not of the form $\langle a, 1,2\rangle$. So condition (2) is not met,
That is W is not closed under vector addition. Also, $\vec{z}=\langle 0,1,2\rangle$ is in W. But, $\overrightarrow{3 z}=\langle 0,3,6\rangle$ is not in w. So,
condition (3) is not met. That is,
w is not closed under
scalar multiplication.
$W(c) W=\{\langle a, b, c\rangle \mid b=a+c, a, b, c \in \mathbb{R}\}$
(i) $\langle 1,3,2\rangle \in \omega$ since $3=1+2$
$\langle\pi, \pi-2,-2\rangle \in W$ since $\pi-2=\pi+(-2)$

$$
\begin{aligned}
& \langle\pi, \pi-2,-2\rangle \in W \text { since } \\
& \left\langle 5, \frac{11}{2}, \frac{1}{2}\right\rangle \in W \text { since } \frac{11}{2}=5+\frac{1}{2} \\
& \langle 3,0,-3\rangle \in W \text { since } O=3+(-3)
\end{aligned}
$$

(ii) W is a subspace of \mathbb{R}^{3}. Let's verify.
(1) $\langle a, b, c\rangle=\langle 0,0,0\rangle$ is in W since $b=a+c$ when $a=0, b=0, c=0$. So, W contains the zeroctor.
(2) Let \vec{v} and \vec{w} be in w. Then $\vec{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\vec{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$
where $b_{1}=a_{1}+c_{1}$ and $b_{2}=a_{2}+c_{2}$.
Adding these two equations gives

$$
\begin{aligned}
& \text { dding these two equations }\left(c_{1}+c_{2}\right) \\
& \left(b_{1}+b_{2}\right)=\left(a_{1}+a_{2}\right)+
\end{aligned}
$$

Therefore,
is in $W \rightarrow \begin{aligned} & \text { Since its } 2 \text { ad component equal } \\ & \text { the sum of the lIst and } 3 \text { rd }\end{aligned}$
So, W is closed under vector addition
(3) Let α be in $F=\mathbb{R}$ and \vec{z} be in W. Then $\vec{z}=\langle a, b, c\rangle$ where $b=a+c$.
So, $\alpha b=\alpha a+\alpha c$.
Thus,

$$
\alpha \vec{z}=\langle\alpha a, \alpha b, \alpha c\rangle
$$

is in w. Since its 2 nd component equal components

So, W is closed under scalar multiplication.
(d) $W=\{\langle a, b, c\rangle \mid b=a+c+1, a, b, c \in \mathbb{R}\}$
$(i)\langle 1,5,3\rangle \in \omega$ since $5=1+3+1$
$\langle 0,1,0\rangle \in \omega$ since $1=0+0+1$
$\langle\pi, \pi+3,2\rangle \in W$ since $\pi+3=\pi+2+1$

$$
\begin{aligned}
& \langle\pi, \pi+3,2\rangle \in W \text { since } 11+s \text { since } 1=\frac{1}{2}-\frac{1}{2}+1 \\
& \left\langle\frac{1}{2}, 1,-\frac{1}{2}\right\rangle \in W \text { in }
\end{aligned}
$$

(ii) W is not a subspace.
(1) For example, $\langle a, b, c\rangle=\langle 0,0,0\rangle$
is not in w since $b \neq a+c+1$ in this example. So condition (1) is not satisfied.
Therefore, W is net a subspace.
$\downarrow\left(\begin{array}{c}\text { continued } \\ \text { on next } \\ \text { pase }\end{array}\right)$

The previous page shows that ω does not contain the zero vector so ω is not a subspace. This is enough to be done with the problem.
For illustrative purposes let me show you how you could have shown that W does not satisty property (2) or (3)
(2) Let $\vec{v}=\langle 1,5,3\rangle$ and $\vec{\omega}=\langle 0,1,0\rangle$ Then \vec{v} and $\vec{\omega}$ are in ω, since $5=1+3+1$ and $1=0+0+1$. However $\vec{v}+\vec{w}=\langle 1,6,3\rangle$ is not in W since $6 \neq 1+3+1$. So, W is not closed under vector add inion.
(3) Let $\vec{z}=\langle 1,5,3\rangle$ and $\alpha=2$.

Then \vec{z} is in w since $S=1+3+1$. However, $\alpha \vec{z}=2 \vec{z}=\langle 2,10,6\rangle$ is not in W since $10 \neq 2+6+1$. So, W is not closed under scalar multiplication.
$2(a) \quad W=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a+b+c+d=0\right\}$
(i) $\left(\begin{array}{cc}1 & -2 \\ 1 & 0\end{array}\right) \in W$ since $1+(-2)+1+0=0$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\pi & -2 \\
2 & -\pi
\end{array}\right) \in W \text { since } \pi+(-2)+2+\pi=0 \\
& \left(\begin{array}{cc}
3 & \frac{1}{2} \\
\frac{1}{2} & -4
\end{array}\right) \in W \text { since } 3+\frac{1}{2}+\frac{1}{2}-4=0 \\
& \left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \in W \text { since } 1+(-1)+(-1)+1=0
\end{aligned}
$$

(\ddot{i}) We show that W is a sulospace of $V=M_{2,2}$.
(1) Setting $a=0, b=0, c=0, d=0$ gives $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and here we have that $a+b+c+d=0+0+0+0=0$. Thus, $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is in W.
(2) Let \vec{v}, \vec{w} be in W.

Then $\vec{v}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ where $a_{1}+b_{1}+c_{1}+d_{1}=0$
and $\vec{w}=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ where $a_{2}+b_{2}+c_{2}+d_{2}=0$.
Adding the two equations yields

$$
\begin{aligned}
& \text { Adding the two equations } \\
& \left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)+\left(c_{1}+c_{2}\right)+\left(d_{1}+d_{2}\right)=0
\end{aligned}
$$

Thus,
$\vec{v}+\vec{W}=\left(\begin{array}{ll}a_{1}+a_{2} & b_{1}+b_{2} \\ c_{1}+c_{2} & d_{1}+d_{2}\end{array}\right)$ is in W.
so, w is closed under vector addition.
So, w is closed under vector addition.
Because the Sum of its four entries is 0 , which is what characterizes the elements of W
(3) Let α be a scalar in $F=\mathbb{R}$.

Let $\vec{z} \in W$.
Then $\vec{z}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a+b+c+\alpha=0$.
Multiplying the above equation by α yields

$$
\begin{aligned}
& \text { tiplying the above ch } \\
& (\alpha a)+(\alpha b)+(\alpha c)+(\alpha d)=0
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
\text { ne, } \\
\overrightarrow{\alpha z}=\left(\begin{array}{cc}
\alpha a & \alpha b \\
\alpha c & \alpha d
\end{array}\right) \text { is in W. }
\end{array}
$$

So, w is closed under scalar multiplication.
Because the sum of its four entries is 0 , which is what characterizes the elements of W
$2(b) \quad W=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \left\lvert\, \operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0\right.\right\}$
$(i) \quad \operatorname{det}\left(\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right)=(1)(-2)-(2)(-1)=0$
So, $\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right) \in W$.
$\operatorname{det}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=(1)(1)-(1)(1)=0$
So, $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \in W$.
$\operatorname{det}\left(\begin{array}{ll}1 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2}\end{array}\right)=(1)\left(\frac{1}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=0$
So, $\left(\begin{array}{cc}1 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2}\end{array}\right) \in W$.
$\operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right)=(0)(5)-(0)(0)=0$
So, $\left(\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right) \in W$.
(ii) W is not a subspace, however it does satisfy the first condition.
(1) $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \in W$ since $\operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=(0)(0)$ $-(0)(0)=0$
[So condition (1) is satisfied]
(2) This condition is nat satisfied.

For example, let $\vec{v}=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$
and $\vec{\omega}=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$. Then

$$
\operatorname{and} w=(\vec{v})=(1)(0)-(-1)(0)=0
$$

and

$$
\operatorname{det}(\vec{w})=(0)(1)-(0)(1)=0
$$

So, \vec{v} and \vec{w} are in w.
However, $\operatorname{det}(\vec{v}+\vec{w})=\operatorname{det}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)=(1)-(-1)=2 \neq 0$
So, $\vec{v}+\vec{w}$ is not in W.
Thus, W is not closed under addition and is not a subspace of $M_{2,2}$.

So, we saw that condition (1) is satisfied but condition (2) is not, At this point you can stop and say that W is not a subspace of $M_{2,2}$ since condition (2) is not satisfied.
For illustrative purposes, let me show you how to show that condition (3) is also satisfied.
Let α be a scalar in $F=\mathbb{R}$ and let $\vec{z}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be in W. Then,

$$
\begin{aligned}
& \vec{z}=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \text { be in W. } \\
& \operatorname{det}(\vec{z})=a d-b c=0 \text { since } z \text { is in w. } \\
& \text { So, } \operatorname{det}(\alpha \vec{z})=\operatorname{det}\left(\begin{array}{cc}
\alpha a & \alpha b \\
\alpha c & \alpha d
\end{array}\right)= \\
& =(\alpha a)(\alpha d)-(\alpha b)(\alpha c)=\alpha[a d-b c] \\
& =\alpha(0)=0
\end{aligned}
$$

$3 a$ $W=\left\{1+b x+c x^{2} \mid b, c\right.$ are in $\left.\mathbb{R}\right\}$
(i)

$$
\begin{aligned}
& 1+2 x-3 x^{2} \\
& 1+0 x+0 x^{2}=1 \\
& 1-x+\pi x^{2} \\
& 1+0 \cdot x+1 \cdot x^{2}=1+x^{2}
\end{aligned}
$$

(ii) W is not a subspace of $M_{2,2}$.
(1) $\vec{O}=0+0 x+0 x^{2}$ is not in W. because it isn't of the form $1+b x+c x^{2}$
Therefore, w is not a subspace.

$$
\left(\begin{array}{c}
(\text { corrtived } \\
0 \\
\text { next } \\
\text { page }
\end{array}\right)
$$

We showed W is not a subspace on the precious page by showing property (1) is not satisfied. That is enough to be done with the problem.
For illustrative pusposes, let me show You how to show that properties (2) and (3) are also not satisfied.
(2) Let $\vec{v}=1+x+x^{2}$ and $\vec{\omega}=1+2 x-x^{2}$ be in w. Then $\vec{v}+\vec{\omega}=2+3 x+0 x^{2}$ which is not of the form $1+b x+c x^{2}$ so not in W. Thus, w is not closed under addition.
(3) Let $\vec{z}=1+x+x^{2}$ and $\alpha=2$.

$$
\begin{aligned}
& \text { (3) Let } \vec{z}=1+x+x \\
& \vec{z} \text { is in W. But } \\
& \text { Then }
\end{aligned}
$$

$2 \vec{z}=2+2 x+2 x^{2}$ which is not of the form $1+b x+c x^{2}$ so in not in W. So, W is net closed under scalar multiplication.
$3 b \quad W=\left\{\begin{array}{l|l}a+b x+c x^{2} & \begin{array}{l}a, b, c \in \mathbb{R} \\ a+2 b=0\end{array}\end{array}\right\}$
(i) $1-\frac{1}{2} x+7 x^{2}$ is in W because $1+2\left(-\frac{1}{2}\right)=0$.
$3-\frac{3}{2} x-\pi x^{2}$ is in ω
because $3+2\left(-\frac{3}{2}\right)=0$
$0+0 x+3 x^{2}$ is in ω
because $0+2(0)=0$
$-\frac{1}{2}+\frac{1}{4} x-10 x^{2}$ is in W
because $-\frac{1}{2}+2\left(\frac{1}{4}\right)=0$
(ii) W is a subspace of P_{2}.
(1) Setting $a=0, b=0, c=0$ we Get $a+b x+c x^{2}=0+0 x+0 x^{2}$ and $a+2 b=0$.
Thus, $\overrightarrow{0}=0+0 x+0 x^{2}$ is in W.
(2) Let \vec{v} and \vec{w} be in P_{2}.

Then, $\vec{v}=a_{1}+b_{1} x+c_{1} x^{2}$ where $a_{1}+2 b_{1}=0$ and $\vec{\omega}=a_{2}+b_{2} x+c_{2} x^{2}$ where $a_{2}+2 b_{2}=0$.
Adding these equations gives

$$
\begin{aligned}
& \text { ding these equations } \\
& \left(a_{1}+a_{2}\right)+2\left(b_{1}+b_{2}\right)=0 \text {. }
\end{aligned}
$$

Hence, $\vec{v}+\vec{w}=\left(a_{1}+c_{2}\right)+\left(b_{1}+b_{2}\right) x+\left(c_{1}+c_{2}\right) x^{2}$ is in W.
So, W is closed under vector addition.
(3) Let \vec{z} be in W and α be in $F=\mathbb{R}$.
$\left.\begin{array}{l}\text { Then } \vec{z}=a+b x+c x^{2} \\ \text { Where } a+2 b=0 .\end{array}\right] \begin{aligned} & \text { since } \\ & \vec{z} \text { is } \\ & \text { in } \omega\end{aligned}$
Multiplying $a+2 b=0$ by α gives

$$
(\alpha a)+2(\alpha b)=0
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \alpha \vec{z}=\alpha a+\alpha b x+\alpha c x^{2}
\end{aligned}
$$

is in W.
So, W is closed under
scalar multiplication.

