
(1) $V=\mathbb{R}^{3}, F=\mathbb{R}$
(a) four elements of V :

$$
\begin{aligned}
(a) \text { tour elements of } & \left\langle\frac{1}{2}, e,-7\right\rangle, \\
\langle 0,0,0\rangle,\langle-1, \pi, 2\rangle, & \langle 3,2,1\rangle
\end{aligned}
$$

for elements of $F: 1, \pi, \frac{1}{2},-17$
(b) Let $\vec{v}, \vec{\omega}$ be in $V=\mathbb{R}^{3}$.

Then $\vec{v}=\langle a, b, c\rangle$ and $\vec{\omega}=\langle x, y, z\rangle$
where a, b, c, x, y, z are real numbers.
We have that

$$
\begin{aligned}
\vec{v}+\vec{w} & =\langle a, b, c\rangle+\langle x, y, z\rangle \\
& =\langle a+x, b+y, c+z\rangle \\
& =\langle x+a, y+b, z+c\rangle \\
& =\langle x, y, z\rangle+\langle a, b, c\rangle \\
& =\vec{w}+\vec{v}
\end{aligned}
$$

(c) Let $\vec{V}, \vec{\omega}$ be in $V=\mathbb{R}^{3}$ and α be in $F=\mathbb{R}$

Then $\vec{V}=\langle a, b, c\rangle$ and $\vec{\omega}=\langle x, y, z\rangle$
where a, b, c, x, y, z are real numbers.
We have that
because of the parentheses

$$
\begin{aligned}
& \text { We have that } \\
& \alpha \cdot(\vec{v}+\vec{w})=\alpha(\langle a, b, c\rangle+\langle x, y, z\rangle)
\end{aligned}
$$

$$
=\alpha\langle a+x, b+y, c+z\rangle
$$

$$
\begin{aligned}
& =\alpha\langle a+x, b+y, c\rangle \\
& =\langle\alpha(a+x), \alpha(b+y), \alpha(c+z)\rangle \\
& \gamma \alpha b+\alpha y, \alpha c+\alpha z\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { real } \\
& \text { numbers } \\
& \text { satisfy } \\
& m(n+t) \\
& =m n+m t
\end{aligned}
$$

$$
\begin{aligned}
& =\langle\alpha(a+x), \alpha(b+\alpha) \\
& \stackrel{\rightharpoonup}{=}\langle\alpha a+\alpha x, \alpha b+\alpha y, \alpha c+\alpha z\rangle \\
& \rangle+\langle\alpha x, \alpha y, \alpha z\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{=}\langle\alpha a+\alpha x, \alpha b+\infty\rangle \\
& =\langle\alpha a, \alpha b, \alpha c\rangle+\langle\alpha x, \alpha y, \alpha z\rangle \\
& =\langle\langle\langle, y, z\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\langle\alpha a, \alpha b, \alpha, 1 \\
& =\alpha\langle a, b, c\rangle+\alpha\langle x, y, z\rangle \\
& \vec{r}+\alpha \cdot \vec{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha\langle a, b, c\rangle, \vec{\omega} \\
& =\alpha \cdot \vec{v}+\alpha \cdot \vec{\omega}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& V=P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\} \\
& F=\mathbb{R}
\end{aligned}
$$

(a) fore elements from $V=P_{2}$:

$$
\begin{aligned}
& 1+x-x^{2} \\
& 1=1+0 \cdot x+0 \cdot x^{2} \\
& -\pi+\frac{1}{2} x+10,032 x^{2} \\
& -13+x^{2}
\end{aligned}
$$

fore elements from $F=\mathbb{R}$:

$$
\text { fore elements from } 1
$$

(b) Let $\vec{v}, \vec{\omega}, \vec{z}$ be in $V=P_{2}$.

Then, $\vec{v}=a_{1}+b_{1} x+c_{1} x^{2}$,

$$
\begin{aligned}
\vec{w} & =a_{2}+b_{2} x+c_{2} x^{2} \\
\text { and } & \vec{z}
\end{aligned}=a_{3}+b_{3} x+c_{3} x^{3},
$$

Where $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}$ we real numbers.

We have that

$$
\begin{aligned}
& (\vec{V}+\vec{\omega})+\vec{z}= \\
= & \left(\left(a_{1}+b_{1} x+c_{1} x^{2}\right)+\left(a_{2}+b_{2} x+c_{2} x^{2}\right)\right)+\left(a_{3}+b_{3} x+c_{3} x^{2}\right) \\
= & \left(\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) x+\left(c_{1}+c_{2}\right) x^{2}\right)+\left(a_{3}+b_{3} x+c_{3} x^{2}\right) \\
= & {\left[\left(a_{1}+a_{2}\right)+a_{3}\right]+\left[\left(b_{1}+b_{2}\right)+b_{3}\right] x+\left[\left(c_{1}+c_{2}\right)+c_{3}\right] x^{3} }
\end{aligned}
$$

(c) Let \vec{V} be in $V=P_{2}$ and α, β be in $F=\mathbb{R}$.
Then $\vec{V}=a+b x+c x^{2}$ where a, b, c are real numbers

We have that

$$
\begin{aligned}
(\alpha \beta) \cdot \vec{v} & =(\alpha \beta)\left[a+b x+c x^{2}\right] \\
& =(\alpha \beta) a+(\alpha \beta) b x+(\alpha \beta) c x^{2} \\
& =\alpha(\beta a)+\alpha(\beta b) x+\alpha(\beta c) x^{2} \\
& =\alpha\left[\beta a+\beta b x+\beta c x^{2}\right] \\
& =\alpha\left[\beta\left(a+b x+c x^{2}\right)\right] \\
& =\alpha \cdot[\beta \cdot \vec{v}]
\end{aligned}
$$

(3) $V=\left\{\left.\left(\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right) \right\rvert\, a, b\right.$ are real numbers $\}, F=\mathbb{R}$
(a) Four elements from V :

$$
\left(\begin{array}{cc}
2 & 1 \\
1 & -5
\end{array}\right),\left(\begin{array}{ll}
\pi & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
1 & -\sqrt{2}
\end{array}\right)
$$

(b) V is not closed under addition, To be a vector space we must have that if \vec{V}, \vec{w} are in V, then $\vec{V}+\vec{\omega}$ is in V. This is not true for this V. $\vec{V}=\left(\begin{array}{cc}2 & 1 \\ 1 & -5\end{array}\right)$ and $\vec{\omega}=\left(\begin{array}{ll}\pi & 1 \\ 1 & 0\end{array}\right)$ are in V For example, but $\vec{v}+\vec{w}=\left(\begin{array}{cc}2+\pi & 2 \\ 2 & -s\end{array}\right)$ is not in V since it isnlt of the form $\left(\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right)$.
(4)
(a) Four elements of $V=\mathbb{R}^{2}$:

$$
\begin{aligned}
& \text { (a) Four elements of } V=\mid \mathbb{R} \\
& \langle 1,-1\rangle,\langle 0,0\rangle,\left\langle\pi,-\frac{1}{2}\right\rangle,\langle 7,-1\rangle
\end{aligned}
$$

(b) We defined a new scalar multiplication: $\alpha\langle a, b\rangle=\langle 2 \alpha a, 2 \alpha b\rangle$

$$
\begin{aligned}
& \text { multiplication: } \\
& \begin{aligned}
3 \cdot\langle 1,-2\rangle & =\langle 2 \cdot 3 \cdot 1,2 \cdot 3 \cdot(-2)\rangle \\
& =\langle 6,-12\rangle
\end{aligned}
\end{aligned}
$$

(c) $V=\mathbb{R}^{2}$ is not a vector space u sing regular vector addition and this new scalar multiplication. For example, part 7 of being a vector space is not true: $1 \vec{v}=\vec{v}$
For example, if $\vec{v}=\langle 4,3\rangle$, then

$$
\begin{aligned}
& \text { For example, if } \vec{v}=\langle 4,3), \\
& 1 \cdot \vec{v}=1 \cdot\langle 4,3\rangle=\langle 2 \cdot 1 \cdot 4,2 \cdot 1 \cdot 3\rangle=\langle 8,6\rangle \\
& \neq \vec{V}
\end{aligned}
$$

