$$
2550
$$

WW 4 - Part 2
Solutions
(I) Let

$$
A=\left(\begin{array}{ccc}
2 & -4 & 5 \\
-1 & 0 & 1 \\
1 & -4 & 6
\end{array}\right)
$$

There are two possibilities, Either A is invertible or A is not invertible.

If A is invertible, then given the system

$$
A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
4 \\
2 \\
7
\end{array}\right)
$$

we would get

$$
\begin{aligned}
& \text { would get } \\
& A^{-1} A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=A^{-1}\left(\begin{array}{l}
4 \\
2 \\
7
\end{array}\right)
\end{aligned}
$$

or

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=A^{-1}\left(\begin{array}{l}
4 \\
2 \\
7
\end{array}\right)
$$

But then the system

$$
\begin{aligned}
2 x_{1}-4 x_{2}+5 x_{3} & =4 \\
-x_{1}+x_{3} & =2 \\
x_{1}-4 x_{2}+6 x_{3} & =7
\end{aligned}
$$

would have a solution.
We are given though that it doesn't have a solution.
Thus, the possibility that A^{-1} exists cannot be true.

So, A^{-1} does not exist.
(2)

We are given that $B^{2}=I$ and $A=P B Q$ and that P and Q are inverses.
P and Q are inverses means that $P Q=Q P=I$. [That is, $P^{-1}=Q$].

Let's show that $A^{2}=I$,
We have that

$$
\begin{aligned}
A^{2} & =A A \\
& =(P B Q)(P B Q) \\
& =P B(Q P) B Q \\
& =P B I B Q \\
& =P B B Q \\
& =P B^{2} Q=\square
\end{aligned}
$$

$$
\begin{aligned}
&=P I Q \\
&=P Q \\
&==I \\
& B^{2}=I Q=I
\end{aligned}
$$

(3) Suppose that A is 3×3 and that

$$
A^{3}=O=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We want to show that

$$
(I-A)^{-1}=I+A+A^{2}
$$

Note that $x^{-1}=y$ means that

$$
x y=y x=I
$$

We have that

$$
\begin{aligned}
\text { We have that } \\
\begin{aligned}
(I-A)\left(I+A+A^{2}\right)= & I I+I A+I A^{2} \\
& -A I-A A-A A^{2} \\
= & I+A+A^{2} \\
& -A-A^{2}-A^{3} \\
= & I-A^{3} \\
= & I-O=I
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(I+A+A^{2}\right)(I-A)= & I I-I A+A I \\
& -A A+A^{2} I-A^{2} A \\
= & I-A+A-A^{2} \\
& +A^{2}-A^{3} \\
= & I-0 \\
= & I .
\end{aligned}
$$

Therefore, since $(I-A)\left(I+A+A^{2}\right)=I$ and $\left(I+A+A^{2}\right)(I-A)=I$
we have that $I-A$ and $I+A+A^{2}$ are inverses and thus,

$$
(I-A)^{-1}=I+A+A^{2}
$$

(4) Let A, C, D be $n \times n$ matrices and I be the $n \times n$ identity matrix. Suppose that $C A=I$ and $A D=I$. We want to use the above information to prove that $C=D$.

Take $C A=I$ and multiply both sides by D on the right side.

Then

$$
(C A) D=I D
$$

So,

$$
C(A D)=D .
$$

Thus,

So, $C=D$.
(5) Suppose that A is $n \times n$ and $\vec{y}, \vec{x} \in \mathbb{R}^{n}$ with $\vec{x} \neq \vec{y}$.
Suppose fur then that $A \vec{x}=A \vec{y}$.
We must show that A is not invertible.
We do this by ruling out the case that A is invertible.
For if A is invertible then we could multiply both sides δ $A \vec{x}=A \vec{y}$ by A^{-1} to get $A^{-1} A \vec{x}=A^{-1} A \vec{y}$ which gives $I \vec{x}=I \vec{y}$ which gives $\vec{x}=\vec{y}$. But $\vec{x} \neq \vec{y}$.
Therefore, we cannot have that A is invertible under the given conditions. So, A^{-1} does not exist.
(6) Suppose A^{-1} exists.

Apply A^{-1} to $A \vec{x}=\vec{b}$ to get

$$
A^{-1}(A \vec{x})=A^{-1} \vec{b}
$$

Which gives

$$
\begin{aligned}
& \text { gives } \\
& I \vec{x}
\end{aligned}=A^{-1} \vec{b}
$$

which yields

$$
\begin{aligned}
& \text { yields } \\
& \vec{x}=A^{-1} \vec{b}
\end{aligned}
$$

Thus, if A^{-1} exists then $\vec{A}=\vec{b}$ has exactly one solution

$$
\vec{x}=A^{-1} \vec{b}
$$

Therefore if $A \vec{x}=\vec{b}$ has infinitely many solutions then A^{-1} cannot exist.

