

Proof of property (3)
when
$$n=2$$

 $\alpha(\beta \vec{u}) = (\alpha \beta)\vec{u}$
Proof: Let \vec{u} be a vector
in \mathbb{R}^2 . Let α,β be in \mathbb{R} .
Then, $\vec{u} = \langle x, y \rangle$ where
 χ and y are in \mathbb{R} .
So,
 $\alpha(\beta \vec{u}) = \alpha(\beta \langle x, y \rangle)$
 $= \alpha \langle \beta x, \beta y \rangle$
 $= \langle \alpha \beta x, \alpha \beta y \rangle \langle \beta \rangle$

A|so, $(2\beta)\vec{u} = (2\beta) < x, y >$ th e sume = < < BY > <

 $\mathcal{A}(\vec{p}\vec{u}) = (\vec{x}\vec{p})\vec{u},$ Therefore, _____ Let's now prove (5) when n = 3. $\left[\chi (\vec{u} + \vec{v}) = \chi \vec{u} + \chi \vec{v} \right]$ proof: Let X be a real number. Let X, V be in R³. Then, $\vec{u} = \langle x, y, z \rangle$

 $\vec{\nabla} = \langle \alpha, b, c \rangle$ and X, Y, Z, a, b, c are real #S. where Then, $d(\vec{u}+\vec{v})$ $= \alpha(\langle x, y, z \rangle + \langle a, b, c \rangle)$ $= \mathcal{A} \langle \mathbf{x} + \alpha, \mathbf{y} + \mathbf{b}, \mathbf{z} + \mathbf{c} \rangle$ $= \langle \alpha(x+\alpha), \alpha(y+b), \alpha(z+c) \rangle$ $=\langle \alpha x + \alpha \alpha, x y + \alpha b, \alpha z + \alpha c \rangle$ $=\langle dX, dY, dZ \rangle + \langle da, db, ac \rangle$ $= \chi \langle \chi, \chi, z \rangle + \chi \langle a, b, c \rangle$

ニ ス び ナ メ ブ. (end of proof markers) Def: Let V and W be in R. Where $V = \langle \alpha_1, \alpha_2, \ldots, \alpha_n \rangle$ and $\vec{w} = \langle b_1, b_2, \dots, b_n \rangle$ The dot product of V and W is defined to be $\vec{v} \cdot \vec{w} = \alpha_1 b_1 + \alpha_2 b_2 + \cdots + \alpha_n b_n$

Note that V.W is a number.

Ex: In \mathbb{R} , lef $v = \langle 3, 5 \rangle$ and $\vec{w} = \langle 7, -1 \rangle$.

In R?, let

 $-\chi$?

= (3)(7) + (5)(-1)= 21 - 5= 16

Properties of the dot product Let W, W, W be in R?. Let K be in R. Then ? $() \quad \overrightarrow{\mathcal{U}} \circ \bigvee = \bigvee \circ \mathcal{U}$ $(3) \times (\overline{u}, \overline{v}) = (\overline{u}, \overline{v}), \overline{v}$ $= \mathcal{U} \cdot (\mathcal{X} \vee)$ Proof of 2 when n=2: Let U, V, W be in R².

Then, $\vec{u} = \langle x, y \rangle$ $\overline{\sqrt{2}} = \langle P, q \rangle$ $\vec{w} = \langle a, b \rangle$ where $X, Y, P, q, a, b \in \mathbb{R}$. We have that $\mathcal{T}_{\mathcal{N}}(\vec{v}+\vec{w}) = \langle x,y \rangle \cdot \left(\langle p,q \rangle + \langle q,b \rangle \right)$ $=\langle x,y\rangle \cdot \langle p+a,q+b\rangle$ $= X(p+\alpha) + y(q+b)$ $= x P + X \alpha + y q + y b \epsilon$ On the other hand, $= \langle x, y \rangle^{*} \langle y, q \rangle + \langle x, y \rangle \cdot \langle q, b \rangle$ A

= Xp+yq+Xq+yb Therefore, び·(ブナジ)=ル·ソナル·ジ.

Abstractly we can write an mxn matrix like

this .

$$M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Where a_{ij} is the entry
in the i-th row and
j-th column.

$$E_{X}: M = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

M is 2×2 .
 $a_{11} = 1$
 $a_{21} = -1$

Ex:
$$M = (1 5 3 0)$$

($a_{11} a_{12} a_{13} a_{14}$)
 $M is 1 \times 4$.
 $a_{12} = 5$
 $a_{13} = 3$
 $a_{14} = 0$
Def: Two matrices M and N
are equal if they have
the same dimensions and
the same entries.

$$Ex: \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 1 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 1 & 3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
$$\frac{Note: Sometimes we want to Mote: Sometimes we want to Matrix. Suppose V = \langle a_{1}, a_{2}, ..., a_{n} \rangle$$
is in IR².

We can think of it
as a 1xn matrix
$$\vec{v} = (a, a_2 \cdots a_n)$$

or as an nx1 matrix
 $\vec{v} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$
Ex: $\vec{v} = \langle 1, 2, 5 \rangle$
Can think of \vec{v} as
 $\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \subset 3x1$ matrix

$(125) \leftarrow 1x3$ matrix