Math 2550-03 4/9/24

Test 2 is in two weeks. Tuesday $4 / 23$. Review day is Thursday $4 / 18$.

Special example:
The "trivial" vector space

It turns out
 there is no basis
for V. We define V to have dimension 0 .

Ex: Let $V=\mathbb{R}^{n}$ and $F=\mathbb{R}$. The standard basis for \mathbb{R}^{n} is $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{n}$ where \vec{v}_{i} has a 1 in spot i and o's everywhere else.
This gives $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

n	standard basis for \mathbb{R}^{n}	$\operatorname{dim}\left(\mathbb{R}^{n}\right)$
2	$\vec{v}_{1}=\langle 1,0\rangle$	2
	$\vec{v}_{2}=\langle 0,1\rangle$	
3	$\vec{v}_{1}=\langle 1,0,0\rangle$	
3	$\vec{v}_{2}=\langle 0,1,0\rangle$	
$\vec{v}_{3}=\langle 0,0,1\rangle$		

Ex:

$$
P_{n}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \left\lvert\, \begin{array}{l}
a_{0}, a_{1}, \ldots, a_{n} \\
\text { are in } \mathbb{R}
\end{array}\right.\right\}
$$

< polynomials of degree $\leqslant n$
The standard basis for P_{n} is

$$
\left.\begin{array}{l}
\vec{v}_{0}=1 \\
\vec{v}_{1}=x \\
\vec{v}_{2}=x^{2} \\
\vdots \\
\vec{v}_{n}=x^{n}
\end{array}\right\} \begin{aligned}
& n+1 \\
& \text { vectors }
\end{aligned}
$$

So, $\operatorname{dim}\left(P_{n}\right)=n+1$

n	standond basis for P_{n}	dim $\left(P_{n}\right)$
0	1	1
1	$1, x$	2
2	$1, x, x^{2}$	3
3	$1, x, x^{2}, x^{3}$	4
\vdots	\vdots	\vdots

Ex: Let $V=M_{2,2} \leftarrow\left\{\begin{array}{l}\text { set } \\ \text { of } \\ 2 x\end{array}\right.$ and $F=\mathbb{R}$.

Idea:

$$
\frac{\text { Idea: }}{\left(\begin{array}{ll}
a \\
c & d
\end{array}\right)}=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

One can show [HW7-Part1]

$$
\begin{aligned}
& \text { that } \\
& \vec{v}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \vec{v}_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& V=M_{2,2} .
\end{aligned}
$$

that
are a basis for $V=M_{2,2}$.
Thus, $\operatorname{dim}\left(M_{2,2}\right)=4$
(The not-a-basis theorem)
Theorem: Let V be a finitedimensional vector space over a field F with $\operatorname{dim}(V)=n$.
means: V has a basis
Let $\vec{\omega}_{1}, \vec{\omega}_{2}, \ldots, \vec{\omega}_{n}$ be vectors from V.
(1) If $m<n$, then $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$, $\cdots, \overrightarrow{w_{m}}$ de not span V.
(2) If $m>n$, then \vec{w}_{1}, \vec{w}_{2}, $\cdots,{ }_{m}$ are linearly dependent.

Ex: Let $v=\mathbb{R}^{3}, F=\mathbb{R}$. Know: $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3 \in n=3$

Let

$$
\left.\begin{array}{l}
\vec{w}_{1}=\langle 1,1,0\rangle \\
\vec{w}_{2}=\langle 3,2,0\rangle
\end{array}\right\} \begin{aligned}
& m=2 \\
& \text { vectors }
\end{aligned}
$$

We have 2 vectors in a 3 -dim space. Since $2<3$, the vectors \vec{w}_{1}, \vec{w}_{2} will not span \mathbb{R}^{3}.

Ex: Let $V=P_{2}, F=\mathbb{R}$.
We know $\operatorname{dim}\left(P_{2}\right)=3$

$$
\text { basis is } 1, x, x^{2}
$$

Let

$$
\left.\begin{array}{l}
\vec{w}_{1}=1+x \\
\vec{w}_{2}=1-x^{2} \\
\vec{w}_{3}=x \\
\vec{w}_{4}=x^{2}
\end{array}\right\} \begin{aligned}
& 4 \\
& \text { vectors }
\end{aligned}
$$

By part (2) of the above theorem, since we have 4 vectors in a 3 -dimensional space and $4>3$, the vectors must be linearly dependent.
we can see it this way:

$$
\left\{\begin{array}{l}
\text { we can see it this way: } \\
1 \cdot(1+x)-1 \cdot\left(1-x^{2}\right)-1 \cdot(x)-1 \cdot\left(x^{2}\right)=\overrightarrow{0} \\
1 \cdot \overrightarrow{w_{1}}-1 \cdot \vec{w}_{2}-1 \cdot \vec{w}_{3}-1 \cdot \vec{w}_{4}=\overrightarrow{0} \\
\vec{w}_{1}=\vec{w}_{2}+\vec{w}_{3}+\vec{w}_{4}
\end{array}\right\}
$$

Theorem: Let V be a finite-dimensional vector space over a field F, with $n=\operatorname{dim}(V)$.
$\left[\begin{array}{l}\text { So, } V \text { has a basis with } n \text { vectors } \\ \text { in it. }\end{array}\right]$
Suppose $\vec{W}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ are vectors from V.
(1) If $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ are linearly independent, then \vec{w}_{1}, \vec{w}_{2}, $\left(\cdots, \vec{w}_{n}\right.$ must span V and hence are a basis for V.
(2) If $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{\omega}_{n}$ spun V, then $\vec{W}_{1}, \vec{w}_{2}, \ldots, \vec{\omega}_{n}$ are linearly independent and hence cure a basis for V.

Ex: Let $V=P_{2}, F=\mathbb{R}$.
We saw last time that $1, x, x^{2}$ is a basis for P_{2}. Thus, $\operatorname{dim}\left(P_{2}\right)=3$.

Consider

$$
\left.\begin{array}{l}
\text { insider } \\
\vec{w}_{1}=1 \\
\vec{w}_{2}=1+x \\
\vec{w}_{3}=1+x+x^{2}
\end{array}\right\} \begin{aligned}
& 3 \\
& \text { vectors }
\end{aligned}
$$

Previously we showed these 3 vectors $1,1+x, 1+x+x^{2}$ are linearly independent.
By the theorem, since we
have 3 lin. ind. vectors in a 3-dim space, they are a basis for P_{2}.

$$
\text { So, } 1,1+x, 1+x+x^{2}
$$

is also a basis for P_{2}.

