

Test Z is in two weeks, Tuesday 4123. Review day is Thursday 4/18.

Special example: The "trivial" vector space the vector Space with just 1 is V = 307It turns out in it there is no basis for V. We define V to have dimension O.

Ex: Let $V = \mathbb{R}^n$ and $F = \mathbb{R}$. The standard basis for R" is V₁, V₂, v_n where V_i has a 1 in spot i and O's everywhere else. This gives $dim(IR^{1}) = n$. n standard basis for Rn dim (Rn) $z | \vec{v}_i = \langle i, o \rangle$ \mathcal{L} $\begin{vmatrix} \neg \\ \lor_2 = \langle 0_/ \rangle >$ $|\vec{v}| = \langle 1, 0, 0 \rangle$ $3|_{v_2} = \langle 0, 1, 0 \rangle$ $\vec{v}_2 = \langle v, v \rangle$

 $\overline{\nabla}_{1} = \langle 1, 0, 0 \rangle$ $V_{2} = \langle 0, 1, 0, 0 \rangle$ $\frac{1}{\sqrt{2}} = \langle 0, 0, 1, 0 \rangle$ $\frac{1}{\sqrt{q}} = \langle 0, 0, 0, 1 \rangle$ D ъ Q l

Ex: $P_n = \left\{ a_0 + a_1 \times + a_2 \times + \dots + a_n \times n \right| \begin{array}{c} a_0, a_1, \dots, a_n \\ a_n \in I \\ a_n$ polynomials of degree The standard basis for Pn is $\vec{v}_0 = 1$ $\vec{v}_1 = X$ vectors $\sqrt{1} = \chi^2$ $\vec{v}_n = \mathbf{x}^n$ So, $dim(P_n) = n + 1$

Ex: Let
$$V = M_{2,2}$$
 (set
and $F = IR$.

$$\frac{Idea:}{\begin{pmatrix} a & b \\ c & d \end{pmatrix}} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
One can show [Hw 7-Part I]
One can show [Hw 7-Part I]
that
 $\frac{1}{V_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad V_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad V_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad V_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
are a basis for $V = M_{2,2}$.
Thus, dim $(M_{2,2}) = 4$

(The not-a-basic theorem) Theorem: Let V be a finitedimensional vector space over a field F with dim(v)=n. means: V has a basis of with n rectors in it Let WijWzjin, Win be vectors from V. () If m<n, then $\vec{w_1}, \vec{w_2}, \dots, \vec{w_m}$ de not span V. (2) If m>n, then w, wzjungwm
are linearly dependent.

Ex: Let
$$V = \mathbb{R}^3$$
, $F = \mathbb{R}$.
Know: dim $(\mathbb{R}^3) = 3 \neq n=3$
Let
 $\overline{W}_1 = \langle 1, 1, 0 \rangle$ $m=2$
 $\overline{W}_2 = \langle 3, 2, 0 \rangle$ $vectors$
We have 2 vectors in a 3-dim
space. Since $2 < 3$, the
vectors $\overline{W}_1, \overline{W}_2$ will not span
 \mathbb{R}^3 .

Exi Let
$$V = P_2$$
, $F = R$.
We know $\dim(P_2) = 3$
basis is $1, x, x^2$
Let
 $\vec{w}_1 = 1 + x$
 $\vec{w}_2 = 1 - x^2$
 $\vec{w}_3 = x$
 $\vec{w}_4 = x^2$
By part (2) of the above
theorem, since we have 4
the vectors
must be linearly dependent.

We can see it this way: $(1+x) - [\cdot(1-x^2) -]\cdot(x) - [\cdot(x^2) = 0]$ $| \cdot w_1 - | \cdot w_2 - | \cdot w_3 - | \cdot w_4 = 0$ $\vec{W}_{1} = \vec{W}_{2} + \vec{W}_{3} + \vec{W}_{4}$

Ex: Let
$$V = P_2$$
, $F = IR$.
We saw last time that
 $1, x, x^2$ is a basis for P_2 .
Thus, dim $(P_2) = 3$.
Consider
 $\vec{w}_1 = 1$
 $\vec{w}_2 = 1 + x$
 $\vec{w}_3 = 1 + x + x^2$
Previously we showed these
Previously we showed these
 $3 \text{ vectors } 1, 1 + x, 1 + x + x^2$
are linearly independent.
By the theorem, since we

have 3 lin. ind. vectors in a 3-dim space, they are a basis for Pz. $5_{2}, 1, 1 + x, 1 + x + x^{2}$ is also a basis for Pz.