$$
\begin{aligned}
& \text { Math 2550-03 } \\
& 4 / 18 / 24
\end{aligned}
$$

HW 7 - Part 1
(2) (b) Is $(3,1,5)$ in the span of $\vec{u}=\langle 0,-2,2\rangle$ and $\vec{v}=\langle 1,3,-1\rangle$ If so, write it as a linear combo of \vec{u} and \vec{v}.

We want to solve

$$
\langle 3,1,5\rangle=\underbrace{c_{1}\langle 0,-2,2\rangle+c_{2}\langle 1,3,-1\rangle}_{c_{1} \vec{u}+c_{2} \vec{v}}
$$

This gives

$$
\begin{aligned}
& \text { This gives } \\
& \langle 3,1,5\rangle=\left\langle 0,-2 c_{1}, 2 c_{1}\right\rangle+\left\langle c_{2}, 3 c_{2},-c_{2}\right\rangle \\
& \langle 3,1,5\rangle=\left\langle c_{2},-2 c_{1}+3 c_{2}, 2 c_{1}-c_{2}\right\rangle \\
& \uparrow
\end{aligned}
$$

Need to solve

$$
\begin{array}{r}
c_{2}=3 \\
-2 c_{1}+3 c_{2}=1 \\
2 c_{1}-c_{2}=5
\end{array} \leftarrow c_{2}=3
$$

Thus,

$$
\langle 3,1,5\rangle=\underbrace{4\langle 0,-2,2\rangle+3\langle 1,3,-1\rangle}_{4 \vec{u}+3 \vec{v}}
$$

So, $\langle 3,1,5\rangle$ is in the span of \vec{u} and \vec{v} and $\langle 3,1,5\rangle=4 \vec{u}+3 \vec{v}$.

WW 7 -Part 1
4(d) In $V=P_{2}$ are

$$
\begin{aligned}
& \text { 4(d) } \vec{p}_{1}=3-2 x+x^{2}, \vec{p}_{2}=1+x+x^{2}, \vec{p}_{3}=6-4 x+2 x^{2}
\end{aligned}
$$

linearly independent or linearly dependent?

We need to solve

$$
\begin{aligned}
& \text { e need to solve } \\
& c_{1} \vec{P}_{1}+c_{2} \vec{P}_{2}+c_{3} \vec{P}_{3}=\overrightarrow{0} \\
& \text { is } c_{1}=0,
\end{aligned}
$$

If the only solution is $c_{1}=0, c_{2}=0, c_{3}=0$ then $\vec{p}_{1}, \vec{p}_{2}, \vec{P}_{3}$ are linearly independent.
If there are more solutions, then the vectors are linearly dependent.

We need to solve

$$
\begin{array}{r}
c_{1}\left(3-2 x+x^{2}\right)+c_{2}\left(1+x+x^{2}\right)+c_{3}\left(6-4 x+2 x^{2}\right) \\
\\
=0+0 x+0 x^{2}
\end{array}
$$

This gives

$$
\begin{aligned}
& \text { This gives } \\
& \begin{aligned}
& 3 c_{1}-2 c_{1} x+c_{1} x^{2}+c_{2}+c_{2} x+c_{2} x^{2}+6 c_{3}-4 c_{3} x+2 c_{3} x^{2} \\
&=0+0 x+0 x^{2}
\end{aligned}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \text { So, } \\
& \begin{array}{r}
\left(3 c_{1}+c_{2}+6 c_{3}\right)+\left(-2 c_{1}+c_{2}-4 c_{3}\right) x+\left(c_{1}+c_{2}+2 c_{3}\right) x^{2} \\
=0+0 x+0 x^{2}
\end{array}
\end{aligned}
$$

Need to solve

$$
\begin{array}{r}
3 c_{1}+c_{2}+6 c_{3}=0 \\
-2 c_{1}+c_{2}-4 c_{3}=0 \\
c_{1}+c_{2}+2 c_{3}=0
\end{array}
$$

$$
R_{1} \leftrightarrow R_{3}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
-2 & 1 & -4 & 0 \\
3 & 1 & 6 & 0
\end{array}\right) \\
& \xrightarrow[-3 R_{1}+R_{3} \rightarrow R_{3}]{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 3 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right) \\
& \xrightarrow{\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right) \\
& \xrightarrow{2 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

which $c_{1}+c_{2}+2 c_{3}=0$ leading

$$
c_{1}, c_{2}
$$ gives

$$
\begin{aligned}
c_{2} & =0 \\
0 & =0
\end{aligned}
$$

free

$$
c_{3}
$$

Solution:

$$
\begin{aligned}
& c_{3}=t \\
& c_{2}=0 \\
& c_{1}=-c_{2}-2 c_{3}=-(0)-2 t=-2 t
\end{aligned}
$$

There's infinity many sols, For example, $t=1$ gives

$$
c_{1}=-2, c_{2}=0, c_{3}=1
$$

$$
\int_{-2 \vec{p}_{1}+0 \vec{p}_{2}+1 \vec{p}_{3}=\overrightarrow{0}}^{\text {Thus, }}
$$

Thus, $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$ ace lin, dep.

HW 6-Part 2
Let $V=\mathbb{R}^{3}, F=\mathbb{R}$.
Let

$$
\begin{aligned}
& \text { Let } \\
& W=\{\langle a, b, c\rangle \mid 4 a-b+2 c=0, a, b, c \in \mathbb{R}\} \\
& V=\mathbb{R}^{3}
\end{aligned}
$$

$\langle 1,2,-1\rangle$ is in W since $4(1)-(2)+2(-1)=0$ $\langle 0,0,0\rangle$ is in W since $4(0)-(0)+2(0)=0$
$\langle 1,1,1\rangle$ is not in W since $4(1)-(1)+2(1) \neq 0$
Prove W is a subspace of \mathbb{R}^{3}
$W=\{\langle a, b, c\rangle \quad b=4 a+2 c, a, b, c \in \mathbb{R}\}$
(1) (zero vector)

Setting $a=0, b=0, c=0$, then $b=4 a+2 c$
So, $\vec{O}=\langle 0,0,0\rangle$ is in W.
(2) $($ closed vader $t)$

Let $\vec{w}_{1}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$
and $\vec{w}_{2}=\left\langle a_{2}, b_{2}, c_{2}\right)$
be in W.
Then, $b_{1}=4 a_{1}+2 c_{1}$ and $b_{2}=4 a_{2}+2 c_{2}$.

Then,

$$
\begin{aligned}
& \text { Then, } \\
& \vec{w}_{1}+\vec{w}_{2}=\left\langle a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { nd } \\
& b_{1}+b_{2}=4 a_{1}+2 c_{1}+4 a_{2}+2 c_{2} \\
&=4\left(a_{1}+a_{2}\right)+2\left(c_{1}+c_{2}\right)
\end{aligned}
$$

So, $\overrightarrow{w_{1}}+\vec{w}_{2}$ is in W.
(3) (closed under scaling)

$$
\text { Let } \vec{\omega}=\langle a, b, c\rangle
$$

be in W and α be a scalar/number.
We know

$$
b=4 a+2 c
$$

since $\vec{W}=\langle a, b, c\rangle$ is in W.

Then,

$$
\begin{aligned}
& \text { hen, } \\
& \alpha \vec{w}=\langle\alpha a, \alpha b, \alpha c\rangle .
\end{aligned}
$$

$$
\text { and } \alpha b=\alpha(4 a+2 c)=4(\alpha a)+2(\alpha c)
$$

and
So, $\alpha \vec{\omega}$ is in W.
By (1), (2), (3) W is a subspace. π

HF 4-Part 1
Find A^{-1} if it exists where

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right.}_{A} \begin{array}{llll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}) \\
& \xrightarrow{-R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 & 0 & 1
\end{array}\right) \\
& \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -2 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{-\frac{1}{2} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & \frac{-1}{2}
\end{array}\right) \\
& \xrightarrow[-R_{3}+R_{2} \rightarrow R_{2}]{-R_{3}+R_{1} \rightarrow R_{1}}(\underbrace{\left.\begin{array}{lll|lll}
1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)}_{A_{3}} \underbrace{S_{0}}_{A^{-1}}\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Ex: Solve

$$
\begin{aligned}
x+z & =1 \\
y+z & =-2 \\
x+y & =4
\end{aligned}
$$

by inverting the coefficient matrix

This system is the same as

$$
\underbrace{\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)}_{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right)
$$

Multiply by A^{-1} on both sides:

So,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right)\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right)
$$

Sol

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
\left(\frac{1}{2}\right)(1)+\left(-\frac{1}{2}\right)(-2)+\left(\frac{1}{2}\right)(4) \\
\left(-\frac{1}{2}\right)(1)+\left(\frac{1}{2}\right)(-2)+\left(\frac{1}{2}\right)(4) \\
\left(\frac{1}{2}\right)(1)+\left(\frac{1}{2}\right)(-2)+\left(-\frac{1}{2}\right)(4)
\end{array}\right)
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3.5 \\
0.5 \\
-2.5
\end{array}\right)
$$

Answer: $x=3,5, y=0,5, z=-2,5$

