Math 2550-03

$$
4 / 16 / 24
$$

Topic 8 - Eigenvalues and Eigenvectors
Def: Let A be an $n \times n$ matrix.
Suppose \vec{x} in \mathbb{R}^{n} and $\vec{x} \neq \overrightarrow{0}$ and $\vec{A} \vec{x}=\lambda \vec{x}$ for some Scalar/number λ. A is lambda? Then λ is called an eigenvalue of A and \vec{x} is called an eigenvector of A corresponding to λ. Given an eigenvalue λ of A, the eigenspace of A corresponding to λ is

$$
\begin{aligned}
& \text { Corresponding to } \lambda \text { is } \\
& E_{\lambda}(A)=\{\vec{x} \mid \vec{x}=\lambda \vec{x}\}
\end{aligned}
$$

$\left[E_{\lambda}(A)\right.$ consists of all eigenvectors corresponding $]$ to λ and also the zero vector ${ }^{-1} 0$

Ex: Let $A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$
Let $\vec{x}=\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)$.
Then,

$$
\begin{aligned}
A \vec{x} & =\underbrace{\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)}_{\underbrace{1}_{\text {answer }=3 \times 1}} \underbrace{\left(\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right)}_{3 \times 1} \\
& =\left(\begin{array}{c}
(0)(-2)+(0)(1)+(-2)(1) \\
(1)(-2)+(2)(1)+(1)(1) \\
(1)(-2)+(0)(1)+(3)(1)
\end{array}\right) \\
& =\left(\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right)=1 \cdot \vec{x}
\end{aligned}
$$

So, $A \vec{x}=1 \cdot \vec{x}] \overrightarrow{A \vec{x}=\lambda \vec{x}} \overrightarrow{x=1}$

So, $\lambda=1$ is an eigenvalue of A and $\vec{x}=\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)$ is an eigenvector corresponding to $\lambda=1$.

How do we find the eigenvalues of an $n \times n$ matrix $A \underset{0}{?}$

Suppose λ is an eigenvalue of A and $\vec{x} \neq \overrightarrow{0}$ is an eigenvector associated with λ.
Then, $A \vec{x}=\lambda \vec{x}$,
So, $A \vec{x}-\lambda \vec{x}=\overrightarrow{0} . \leftrightarrows \longleftrightarrow \begin{aligned} & \text { using } \\ & I_{n} \vec{x}=\vec{x}\end{aligned}$
Then, $\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}^{k}$ where
In is the $n \times n$ identity matrix.

So, $\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}$ where $\vec{x} \neq \overrightarrow{0}$.
The only way this can happen is if $A-\lambda I_{n}$ has no inverse.]
Why? Let $B=A-\lambda I_{n}$.
If B^{-1} existed then since $\overrightarrow{B x}=\overrightarrow{0}$ you would get $\vec{B}^{-1} B \vec{x}=B^{-1} \overrightarrow{0}$ which would give $\vec{x}=\overrightarrow{0}$.
But $\vec{x} \neq \overrightarrow{0}$. Se, \vec{B}^{-1} does not exist

Thus, $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ since $\left(A-\lambda I_{n}\right)^{-1}$ does not exist.

Summary: The eigenvalues of A satisfy the equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
(called the characteristic)
polynomial of A

Ex: Let $A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$
Let's find the eigenvalues of A. We need to solve

$$
\operatorname{det}\left(A-\lambda I_{(3)}\right)=0
$$

We have

$$
\begin{aligned}
& \operatorname{det}\left(A-\lambda I_{3}\right) \\
& =\operatorname{det}(\underbrace{\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)}_{A}-\lambda \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)}_{I_{3}}) \\
& \left.=\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)-\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 0 & -2 \\
1 & \left.\begin{array}{c}
\text { expand } \\
0 \\
\text { column 2 } \\
1 \\
1
\end{array}\right) & 3-\lambda
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-0+(2-\lambda) \underbrace{\left.\begin{array}{ccc}
-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right)}_{\left(\begin{array}{ccc}
-\lambda & 1 & -2 \\
\hline & 2-\lambda) & + \\
1 & 0 & 3-\lambda
\end{array}\right)}-0 \\
& =(2-\lambda)\left|\begin{array}{cc}
-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right| \\
& =(2-\lambda)[(-\lambda)(3-\lambda)-(1)(-2)] \\
& =(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right) \sigma \begin{array}{l}
\text { we } \\
\text { will } \\
\text { wse } \\
\text { this }
\end{array} \\
& =2 \lambda^{2}-6 \lambda+4-\lambda^{3}+3 \lambda^{2}-2 \lambda(\underbrace{\text { below }}_{\text {(thens }}) \\
& =-\lambda^{3}+5 \lambda^{2}-8 \lambda+4+\begin{array}{c}
\text { chanateriistic } \\
\text { polynomiac } \\
\text { of } A
\end{array}
\end{aligned}
$$

The eigenvalues of A are the λ that solve

$$
-\lambda^{3}+5 \lambda^{2}-8 \lambda+4=0
$$

From above this becomes

$$
(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)=0
$$

which becomes

$$
(2-\lambda)(\lambda-1)(\lambda-2)=0
$$

factor out (-1)

$$
-(\lambda-2)(\lambda-1)(\lambda-2)=0
$$

So we get

$$
-(\lambda-2)^{2}(\lambda-1)=0
$$

The eigenvalues/roots are $\lambda=1,2$

Let's find the eigenvectors of A.
Let's start with $\lambda=1$.
Let's find a basis for

$$
\begin{aligned}
& \text { Let's find a } \\
& E_{1}(A)=\{\vec{x} \mid \overrightarrow{A x}=1 \cdot \vec{x}\}
\end{aligned}
$$

The equation $\vec{A} \vec{x}=1 \cdot \vec{x}$ becomes

$$
\begin{aligned}
& \text { he equation } A x-1 \times\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}=\underbrace{\left(\begin{array}{lrr}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3 \\
b \\
c
\end{array}\right)}_{\text {is becomes }}
$$

This becomes

$$
\left(\begin{array}{c}
0 a+0 b-2 c \\
a+2 b+c \\
a+0 b+3 c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

This gives $\left(\begin{array}{r}-2 c \\ a+2 b+c \\ a \\ a\end{array}\right)=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
This gives $\left(\begin{array}{rr}-a & -2 c \\ a & +b+c \\ a & +2 c\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
\text { So, } \quad \begin{aligned}
-a & -2 c
\end{aligned}=0
$$

Solving we get

$$
\begin{aligned}
& \text { Solving we get } \\
& \left(\begin{array}{ccc|c}
-1 & 0 & -2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \\
& \xrightarrow{-R_{1}+R_{2} \rightarrow R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We get

$$
\begin{array}{r}
a+2 c=0 \\
b-c=0 \tag{2}\\
0=0
\end{array}
$$

fang: a, b
(3) tree:

Solving:

$$
c=t
$$

(2) $b=c=t$
(1) $a=-2 c=-2 t$

Thus, if $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is in $E_{1}(A)$
then $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}-2 t \\ t \\ t\end{array}\right)=t\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$
So, $\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)$ is a basis for $E_{1}(A)$
Thus, $\operatorname{dim}\left(E_{1}(A)\right)=1$

Ex: When $t=1$ we get $\vec{x}=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$ that we used earlier.

