Math 2550-03 4/16/24

	R
4/16	4/18
Eigenvalves	Test 2 Review
4/23	4/25
Test 2	Eigenvalves
4/30 Topic 9 not on final	5/2 Topic 9 not on final
5/7	5/9
Review	Review
5/14 Final 2:30-4:30	

Tupic 8 - Eigenvalues and Eigenvectors Def: Let A be an nxn matrix. Suppose \vec{x} in \mathbb{R}^n and $\vec{x} \neq \vec{0}$ and $A\vec{x} = \lambda\vec{x}$ for some Scalar/number J. & Lislambdag Then A is called an eigenvalue of A and x is called an eigenvector of A corresponding to X. Given an eigenvalue L of A, the eigenspace of A Corresponding to 2 is $E_{\lambda}(A) = \{ \vec{X} \mid A \vec{X} = \lambda \vec{X} \}$ (EX(A) consists of all eigenvectors corresponding to) and also the zero To

Ex: Let $A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$ Let $\chi = \begin{pmatrix} -2 \\ 1 \\ - \end{pmatrix}$. $A \stackrel{\rightarrow}{\times} = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ Then, 3×3 , 3×1 answer = 3×1 $= \begin{pmatrix} (0)(-2) + (0)(1) + (-2)(1) \\ (1)(-2) + (2)(1) + (1)(1) \\ (1)(-2) + (0)(1) + (3)(1) \end{pmatrix}$ $=\begin{pmatrix} -2\\1\\1 \end{pmatrix} = \int \cdot X$ $A = \int \cdot X$ $A = \int \cdot X$ 50,

So,
$$\lambda = 1$$
 is an eigenvalue of A
and $\vec{x} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ is an eigenvector
curresponding to $\lambda = 1$.

How do we find the eigenvalues
of an nxn matrix A B
Suppose
$$\lambda$$
 is an eigenvalue of A
and $\vec{x} \neq \vec{\partial}$ is an eigenvector
associated with λ .
Then, $A\vec{x} = \lambda\vec{x}$.
So, $A\vec{x} - \lambda\vec{x} = \vec{0}$.
Then, $(A - \lambda I_n)\vec{x} = \vec{0}$ where
 I_n is the nxn identity matrix.

So, $(A - \lambda T_n) \overrightarrow{x} = 0$ where $\overrightarrow{x} \neq \overrightarrow{0}$. The only way this can happen is if $A - \lambda T_n$ has no inverse. Why? | Let $B = A - \lambda I_{\Lambda}$. If B'existed then since BX=0 you would get BBX=B0 which would give $\vec{X} = \vec{0}$. But x ≠ 0. So, B'does not exist

Thus, $det(A - \lambda I_n) = 0$ since $(A - \lambda I_n)^{-1} does not$ exist.

Summary: The eigenvalues of A satisfy the equation $det(A - \lambda I_n) = 0.$ Called the characteristic polynomial of A \bigwedge Ex: Let $A = \begin{pmatrix} 0 & 0 & -z \\ 1 & z & 1 \\ 1 & 0 & 3 \end{pmatrix}$ Let's find the eigenvalues of A. We need to solve $det(A-\lambda I_3) = 0$ because3×3

We have $det(A - \lambda I_3)$ $= \det \left(\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)$ A $\pm z$ $= det \left(\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \right)$ $= \det \begin{pmatrix} -\lambda & 0 & -2 \\ 1 & 2-\lambda & 1 \\ 0 & 3-\lambda \end{pmatrix}$ $\begin{array}{c} \text{expand} \\ \text{on} \\ \text{column Z} \end{array} \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$

$$= -0 + (2-\lambda) \begin{vmatrix} -\lambda & -2 \\ 1 & 3-\lambda \end{vmatrix} = 0$$

$$= (2-\lambda) \begin{vmatrix} -\lambda & -2 \\ 1 & 4 & 3-\lambda \end{vmatrix}$$

$$= (2-\lambda) \begin{vmatrix} -\lambda & -2 \\ 1 & 3-\lambda \end{vmatrix}$$

$$= (2-\lambda) \left((-\lambda)(3-\lambda) - (1)(-2) \right)$$

$$= (2-\lambda) \left((\lambda^2 - 3\lambda + 2) \right)$$
we will use

$$= 2\lambda^{2} - 6\lambda + 4 - \lambda^{3} + 3\lambda^{2} - 2\lambda$$

$$= 2\lambda^{2} - 6\lambda + 4 - \lambda^{3} + 3\lambda^{2} - 2\lambda$$

$$= -\lambda^{3} + 5\lambda^{2} - 8\lambda + 4$$

The eigenvalues of A are the & that solve $-\lambda^3 + 5\lambda^2 - 8\lambda + 4 = 0$ From above this becomes $(2-\lambda)(\lambda^2-3\lambda+2)=0$ Which becomes $(2-\lambda)(\lambda-1)(\lambda-2)=0$ Factor out (-1) $-(\lambda-2)(\lambda-1)(\lambda-2)=0$ So we get $-\left(\lambda - 2\right)^{2}\left(\lambda - 1\right) = 0$ The eigenvalues/roots are $\lambda = 1, 2$

Let's find the eigenvectors of A. Let's start with $\lambda = 1$, Let's find a basis for $E_{1}(A) = \{ \vec{x} \mid A \vec{x} = | \cdot \vec{x} \}$ The equation $A \stackrel{\rightarrow}{\times} = [\cdot \stackrel{\rightarrow}{\times} becomes$ $\begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 9 \\ b \\ c \end{pmatrix} = \int \begin{pmatrix} 9 \\ b \\ c \end{pmatrix}$ $A = 1 \cdot X$ This becomes $\begin{pmatrix} 0a+0b-2c \\ a+2b+c \\ a+0b+3c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

This gives
$$\begin{pmatrix} -2c \\ a+2b+c \\ a & +3c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

This gives $\begin{pmatrix} -a & -2c \\ a & +b+c \\ a & +2c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

So,
$$-\alpha - 2c = 0$$

 $\alpha + b + c = 0$
 $\alpha + 2c = 0$

Solving we get

$$\begin{pmatrix} -1 & 0 & -2 & | & 0 \\ 1 & 1 & 1 & | & 0 \\ 1 & 0 & 2 & | & 0 \end{pmatrix} \xrightarrow{-R_1 \to R_1} \begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 1 & 1 & 1 & | & 0 \\ 1 & 0 & 2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{-R_1 + R_2 \to R_2} \begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

We get

$$\alpha + 2c = 0$$
 (1) (leading: a,b)
 $b - c = 0$ (2) (ree: c, c)
 $0 = 0$ (3)

Solving C= 大 b=c=t $\int \alpha = -2c = -2t$ Thus, if $\vec{X} = \begin{pmatrix} q \\ 5 \\ c \end{pmatrix}$ is in $E_1(A)$ then $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2t \\ t \\ t \end{pmatrix} = t \begin{pmatrix} -2t \\ l \\ l \end{pmatrix}$ So, $\begin{pmatrix} -2\\ 1 \end{pmatrix}$ is a basis for $E_1(A)$ $dim(E_1(A)) = 1$ Thus,

Ex: When
$$t = 1$$
 we get $\vec{x} = \begin{pmatrix} -z \\ i \end{pmatrix}$
that we used earlier.