

What's a basis good for? To make a coordinate system.

Theorem: Let V be a vector
space over a field F.
Let
$$\vec{V}_1, \vec{V}_2, \dots, \vec{V}_n$$
 be a basis
for V. Then given any
for V. Then given any
vector \vec{V} from V there
exist vnique scalars $c_{11}c_{21}\dots, c_n$
where
 $\vec{V} = c_1\vec{V}_1 + c_2\vec{V}_2 + \dots + c_n\vec{V}_n$

 E_{X} : $V = IR^2$, F = IRPreviously we saw that $v_1 = \langle z_1 \rangle, \quad v_2 = \langle -1, 1 \rangle$ is a basis for R². Also we saw that for any $\sqrt{3} = \langle 9, b \rangle$ we had $\langle a, b \rangle = \left(\frac{1}{3}a + \frac{1}{3}b\right) \langle 2, 1 \rangle + \left(-\frac{1}{3}a + \frac{2}{3}b\right) \langle -1, 1 \rangle$ $\vec{v} = C_1 \vec{v}_1 + C_2 \vec{v}_2$ Ex: $\langle 3, -6 \rangle = (-1) \cdot \langle 2, 1 \rangle + (-5) \cdot \langle -1, 1 \rangle$ |a=3, b=-6|

If instead you used the standard basis $W_1 = \langle 1, 0 \rangle$, $W_2 = \langle 0, 1 \rangle$ then you'd have $< 3, -6 > = 3 \cdot < 1, 0 > + (-6) \cdot < 0, 1 >$

Def: Let V be a vector space over a field F. Let V, Vz) ", Vn be a basis for V. If we fix this ordering on the basis elements, then we call this an ordered basis for V.

(name of basis) brackets mean that the order matters B = beta to denote an ordered basis. Given any vector V from V We can write - $\vec{V} = c_1 V_1 + c_2 V_2 + \dots + c_n V_n$ The constants c₍₁^c2)..., c_n are Called the <u>coordinates of v</u> with respect to the basis B. We write $\begin{bmatrix} \vec{n} \\ \vec{n} \end{bmatrix}_{\beta} = \langle c_{1}, c_{2}, \dots, c_{n} \rangle$ Cuordinate vector of i w/ respect to p

 $\begin{array}{ccc} (\alpha & write \\ (\neg) ((\neg)) ((\neg)) ((\neg))((\neg))) ((\neg) ((\neg))))((\neg) ((\neg)))((\neg)))((\neg))((\neg))((\neg)))((\neg))$ $E_{X}: V = \mathbb{R}, F = \mathbb{R}$ two $B = \left[< 1, 0 \right], < 0, 1 \right]$ Let different orderings on the $\beta' = [< 0, 17, < 1, 07]$ stundard basis $\gamma = \left[\langle z, i \rangle, \langle -i, i \rangle \right]$ two different ordenings of basis $\chi' = [\langle -1, 17, \langle 2, 1 \rangle]$ < 2, 17, (-1, 17)Let $\sqrt{3}$, -6.

Note $\sqrt{3} = \langle 3, -6 \rangle = 3 \cdot \langle 1, 0 \rangle + (-6) \cdot \langle 0, 1 \rangle$ $\begin{bmatrix} -1 \\ v \end{bmatrix}_{\beta} = \langle 3 \\ -6 \rangle$ رەك Note $v_{v} = \langle 3, -6 \rangle = (-6) \langle 0, 1 \rangle + (3) \langle 1, 0 \rangle$ B' = [(0,1),(1,0)] $\left[\overrightarrow{v}\right]_{B} = \langle -6, 3 \rangle$ $X = [\langle 2, 1 \rangle, \langle -1, 1 \rangle]$ Note $\vec{v} = \langle 3, -6 \rangle = (-1) \langle 2, 1 \rangle + (-5) \langle -1, 1 \rangle$

So, $[\vec{v}]_{\chi} = \langle -1, -5 \rangle$ 8' = [<-1, 17, <2, 17]Note, $\sqrt{3} = \langle 3, -6 \rangle = (-5) \langle -1, 1 \rangle + (-1) \langle 2, 1 \rangle$ $\begin{bmatrix} -5 \\ -5 \end{bmatrix}_{\chi'} = \langle -5 \\ -5 \\ -1 \rangle$ ر مک Q: What if you know that $\mathcal{Y} = \left[\langle 2, 1 \rangle, \langle -1, 1 \rangle \right]$ $\begin{bmatrix} -\frac{1}{2} \end{bmatrix}_{\chi} = \langle 3, -2 \rangle,$ What is w?

ílhen, $\vec{\omega} = 3\langle 2, 1 \rangle + (-2)\langle -1, 1 \rangle$ $= \langle 6, 3 \rangle + \langle 2, -2 \rangle$ = < 8, 17 $E_X: V = P_2, F = \mathbb{R}$ (polys of degree < 2) Let $[1, x, x^2] \leftarrow (standard basis)$ $\gamma = [1, 1+x, 1+x+x^2] \leftarrow (the basis)$ We found $v = 4 + 2x + 3x^2$

Find [] p and []. $\vec{v} = 4 \cdot [+ z \cdot x + 3 \cdot x^{2}]$ $S_{0}, \qquad [\vec{v}]_{\beta} = \langle 4, 2, 3 \rangle$ $B = [1, x, x^{2}]$ To find [v], we must solve $4 + 2x + 3x^{2} = c_{1}(1) + c_{2}(1+x) + c_{3}(1+x+x^{2})$ $\mathcal{Y} = \left[(, 1 + X, 1 + X + X^2) \right]$ This becomes $4 + 2x + 3x^{2} = c_{1} + c_{2} + c_{2} \times + c_{3} + c_{3} \times + c_$

Which gives
$$4 + 2x + 3x^{2} = (c_{1} + c_{2} + c_{3}) + (c_{2} + c_{3})x + c_{3}x^{2}$$

This gives

$$(c_1 + c_2 + c_3 = 4)$$

 $(c_2 + c_3 = 2)$
 $(c_3 = 3)$
 $(c_3 = 3)$

Thus, $4+2x+3x^{2} = 2(1) + (-1)(1+x) + (3)(1+x+x^{2})$ $\mathcal{X} = [1, 1+X, 1+X+X^2]$ 50, $[4+2x+3x^2]_{x} = \langle Z, -1, 3 \rangle$

et's do an example where We find a busis for a subspace! HW 7-Part2) $(1)(b) \quad V = \mathbb{R}^3, \quad F = \mathbb{R}$ $W = \{(a,b,c) | b = a+C, a,b,c \in \mathbb{R}\}$ V = IR $\langle 0, 1, 0 \rangle$ <1,8,7) <1,3,2< 1, 1, 1><-1,-7,-67 (ه روره)

In HW you show that W
is a subspace for
$$\mathbb{R}^{3}$$
.
Let's find a basis for W.
Let $\begin{pmatrix} a \\ b \end{pmatrix}$ be in W.
Then, $b = a + c$.
So,
 $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ a + c \\ c \end{pmatrix} = \begin{pmatrix} a \\ a \end{pmatrix} + \begin{pmatrix} 0 \\ c \\ c \end{pmatrix}$
 $= a \begin{pmatrix} 1 \\ b \end{pmatrix} + c \begin{pmatrix} 0 \\ c \\ c \end{pmatrix}$
Thus, $\begin{pmatrix} 1 \\ b \\ c \end{pmatrix}, \begin{pmatrix} 0 \\ c \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ c \\ c \end{pmatrix}$

Let's show
$$\begin{pmatrix} i \\ 0 \end{pmatrix} , \begin{pmatrix} 0 \\ i \end{pmatrix}$$
 are lin, ind.

We must solve

$$C_{1}\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} + C_{2}\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

for
$$c_{1}, c_{2}$$
.
This becomes
$$\begin{pmatrix} c_{1} \\ c_{1} + c_{2} \\ c_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} c_{1} = 0 \\ c_{2} + c_{2} = 0 \\ 0 \end{pmatrix} \begin{pmatrix} c_{1} = 0 \\ c_{2} + c_{2} = 0 \\ c_{2} = 0 \end{pmatrix}$$

So,
$$c_1 = 0$$
, $c_2 = 0$ is the only solution.
Thus, $\binom{1}{0}$, $\binom{0}{1}$ are lin. ind.
Therefore $\binom{1}{0}$, $\binom{0}{1}$ are a basis
for W. Thus, dim $(W) = Z$.

So, Wis a 2-dimensional Space inside the 3-dimensional Space $V = \mathbb{R}^3$.