Math 2550-03 $4 / 11 / 24$

What's a basis good for? To make a coordinate system.

Theorem: Let V be a vector space over a field F. Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be a basis for V. Then given any vector \vec{V} from V there exist unique scalars $c_{1,}, c_{2 j}, \ldots, c_{n}$ where

$$
\vec{V}=c_{1} \vec{V}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{V}_{n}
$$

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Previously we saw that

$$
\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle
$$

is a basis for \mathbb{R}^{2}.
Also we saw that for any $\vec{v}=\langle a, b\rangle$ we had

$$
\underbrace{\langle a, b\rangle=\left(\frac{1}{3} a+\frac{1}{3} b\right)\langle 2,1\rangle+\left(-\frac{1}{3} a+\frac{2}{3} b\right)\langle-1,1\rangle}_{\vec{v}=c_{1} \overrightarrow{v_{1}}+c_{2} \vec{v}_{2}}
$$

Ex:

$$
\begin{aligned}
& \langle 3,-6\rangle=(-1) \cdot\langle 2,1\rangle+(-5) \cdot\langle-1,1\rangle \\
& \langle a=3, b=-6\rangle
\end{aligned}
$$

If instead you used the standard basis $\vec{w}_{1}=\langle 1,0\rangle, \vec{w}_{2}=\langle 0,1\rangle$ then you'd have

$$
\langle 3,-6\rangle=3 \cdot\langle 1,0\rangle+(-6) \cdot\langle 0,1\rangle
$$

Def: Let V be a vector space over a field F. Let \vec{v}_{1}, \vec{v}_{2})". \vec{v}_{n} be a basis for V.
If we fix this ordering on the basis elements, then we call this an ordeced basis for V.
We write

$$
\beta=\left[\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}\right]
$$

name of
basis

$$
\beta=b e t a
$$

brackets means that the order matters
to denote an ordered basis. Given any vector \vec{V} from V we can write

$$
\begin{aligned}
& \text { can write } \\
& \vec{V}=c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+\cdots+c_{n} \vec{V}_{n}
\end{aligned}
$$

The constants $\left.c_{1}, c_{2}, \ldots\right) c_{n}$ are called the coordinates of \vec{V} with respect to the basis β.

We write

$$
\begin{aligned}
& \text { Se write } \\
& {[\vec{v}]_{\beta}=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle}
\end{aligned}
$$

coordinate vector of \vec{V} $\omega /$ respect to β
can write

$$
\left[\begin{array}{c}
\vec{v}]_{\beta} \\
{\left[\begin{array}{c}
\text { write }
\end{array}\right.} \\
=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) .
\end{array}\right.
$$

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
$\beta=[\langle 1,0\rangle,\langle 0,1\rangle]\} \begin{aligned} & \text { two } \\ & \text { different }\end{aligned}$
$\begin{aligned} & \text { different } \\ & \text { orderings }\end{aligned}$
on the
standard
basis
$\gamma=[\langle 2,1\rangle,\langle-1,1\rangle]$ two different
$\left.\gamma^{\prime}=[\langle-1,1\rangle,\langle 2,1\rangle]\right\} \begin{gathered}\text { orderings } \\ \text { of basis } \\ \langle 2,1\rangle\langle-1,1\rangle\end{gathered}$ $\langle 2,17,\langle-1,1\rangle$
Let $\vec{v}=\langle 3,-6\rangle$.

Note

$$
\vec{v}=\langle 3,-6\rangle=3 \cdot\langle 1,0\rangle+(-6) \cdot\langle 0,1\rangle)
$$

So,

$$
[\vec{v}]_{\beta}=\langle 3,-6\rangle
$$

Note

$$
\begin{aligned}
& \text { Note } \\
& \vec{v}=\langle 3,-6\rangle=(-6)\langle 0,1)+(3)\langle 1,0\rangle \\
& {[\vec{V}]_{\beta^{\prime}}=\langle-6,3\rangle \quad \beta^{\prime}=[(0,1),\langle 1,0\rangle]}
\end{aligned}
$$

Note

$$
\gamma=[\langle 2,1\rangle,\langle-1,1\rangle]
$$

$$
\vec{v}=\langle 3,-6\rangle=(-1)\langle 2,1\rangle+(-5)\langle-1,1\rangle
$$

\uparrow

So, $[\vec{v}]_{\gamma}=\langle-1,-5\rangle$

Note,

$$
\gamma^{\prime}=[\langle-1,1\rangle,\langle 2,1\rangle]
$$

$$
\vec{v}=\langle 3,-6\rangle=(-5)\langle-1,1\rangle+(-1)\langle 2,1\rangle
$$

So,

$$
[\vec{v}]_{\gamma^{\prime}}=\langle-5,-1\rangle
$$

Q: What if you know that

$$
[\vec{w}]_{\gamma}=\left\langle\frac{3,-2\rangle}{3,-2} \quad \gamma=[\langle\langle, 1\rangle,\langle-1,1\rangle]\right.
$$

What is $\vec{\omega}$?

Then,

$$
\begin{aligned}
\vec{w} & =3\langle 2,1\rangle+(-2)\langle-1,1\rangle \\
& =\langle 6,3\rangle+\langle 2,-2\rangle \\
& =\langle 8,1\rangle
\end{aligned}
$$

$E x: V=P_{2}, F=\mathbb{R}$
polys of degree $\leqslant 2$
Let

$$
\begin{aligned}
& \text { Let } \\
& \beta=\left[1, x, x^{2}\right] \leftarrow \text { standard basis } \\
& \gamma=\left[1,1+x, 1+x+x^{2}\right] \leftarrow \text { other basis } \\
& \text { we found }
\end{aligned}
$$

Let $\vec{v}=4+2 x+3 x^{2}$

Find $[\vec{v}]_{\beta}$ and $[\vec{v}]_{\gamma}$.
Note

$$
\stackrel{\text { Note }}{\vec{v}}=4 \cdot 1+2 \cdot x+3 \cdot x^{2}
$$

So,

$$
\beta=\left[1, x, x^{2}\right]
$$

$$
[\vec{v}]_{\beta}=\langle 4,2,3\rangle
$$

To find $[\vec{v}]_{\gamma}$ we must solve

$$
\underbrace{4+2 x+3 x^{2}}_{\vec{v}}=c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)
$$

This becomes

$$
4+2 x+3 x^{2}=c_{1}+c_{2}+c_{2} x+c_{3}+c_{3} x+c_{3} x^{2}
$$

Which gives

$$
\begin{aligned}
& \text { Which gives } \\
& 4+2 x+3 x^{2}=\left(c_{1}+c_{2}+c_{3}\right)+\left(c_{2}+c_{3}\right) x+c_{3} x^{2}
\end{aligned}
$$

\qquad
This gives

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =4 \\
c_{2}+c_{3} & =2 \\
c_{3} & =3
\end{aligned}
$$

(1)
(2) 5

$$
\text { (2) } \begin{aligned}
c_{2} & =2-c_{3} \\
& =2-3=-1 \\
\text { (1) } c_{1} & =4-c_{2}-c_{3} \\
& =4+1-3 \\
& =2
\end{aligned}
$$

(3) $c_{3}=3$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& 4+2 x+3 x^{2}=2(1)+(-1)(1+x)+(3)\left(1+x+x^{2}\right) \\
& \text { so, }
\end{aligned}
$$

$$
\left[4+2 x+3 x^{2}\right]_{\gamma}=\langle 2,-1,3\rangle
$$

Let's do an example where we find a busis for a subspace!

How 7-Part2

$$
\begin{aligned}
& \text { (1) }(b) V=\mathbb{R}^{3}, F=\mathbb{R} \\
& W=\{\langle a, b, c\rangle \mid b=a+c, a, b, c \in \mathbb{R}\}
\end{aligned}
$$

$$
\begin{array}{cc}
W & V=\mathbb{R}^{3} \\
\begin{array}{cc}
\langle 1,3,2\rangle & \langle 1,8,7\rangle \\
0 & \langle 0,1,0\rangle \\
\langle 0,0,0\rangle & \begin{array}{c}
0 \\
0 \\
0
\end{array} \\
\langle 1,1,-7,-6\rangle \\
0 & \langle 1,1\rangle \\
0
\end{array} &
\end{array}
$$

In HW you show that W is a subspace for \mathbb{R}^{3}.
Let's find a basis for W.
Let $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be in W.
Then, $b=a+c$.
So,

$$
\begin{aligned}
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
a \\
a+c \\
c
\end{array}\right) & =\left(\begin{array}{l}
a \\
a \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
c \\
c
\end{array}\right) \\
& =a\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Thus, $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ span W.

$$
\left[E X:\left(\begin{array}{c}
5 \\
-1 \\
-6
\end{array}\right)=5\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-6\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right]
$$

Let's show $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ are lin, ind.
We must solve

$$
\begin{aligned}
& e \text { must solve } \\
& c_{1}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

for c_{1}, c_{2}.
This becomes $\left(\begin{array}{c}c_{1} \\ c_{1}+c_{2} \\ c_{2}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \leftarrow c_{1}=0$
So, $c_{1}=0, c_{2}=0$ is the only solution,
Thus, $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ are lin. ind.
Therefore $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ are a basis for w. Thus, $\operatorname{dim}(w)=2$.

So, W is a 2 -dimensional space inside the 3 -dimensional space $V=\mathbb{R}^{3}$.

