Math 2550-03

$$
3 / 28 / 24
$$

We are going to define a basis Which is a way to create a coordinate system in a vector space.

Def: Let V be a vector space over a field F.
Let $\vec{V}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{n}$ be vectors from V. We say that $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ form a basis for \checkmark if:
(1) \vec{V}_{1}, \vec{V}_{2},… \vec{V}_{n} span V
(2) $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ are linearly independent.
(1) guarantees that every vector \vec{V}] from V can be written as $\vec{V}=c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+\cdots+c_{n} \vec{V}_{n}$
(2) guarantees that there are no redundencies in \vec{v}_{1}, \vec{V}_{2}) (", \vec{V}_{n}
$E x: V=\mathbb{R}^{2}, \quad F=\mathbb{R}$

$$
\frac{E X:}{\text { Let }} \vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle
$$

(1) We showed previously that

$$
\begin{aligned}
& \text { (1) We showed } \\
& \vec{V}_{1)} \vec{V}_{2} \text { span } V=\mathbb{R}^{2}
\end{aligned}
$$

This is because any vector $\vec{V}=\langle a, b\rangle$ can be written as

$$
\begin{aligned}
&\langle a n b e \\
&\langle a\langle 1,0\rangle+b\langle 0,1\rangle \\
&=a \vec{v}_{1}+b \vec{v}_{2}
\end{aligned}
$$

$\underline{e x:}\langle 5,-1\rangle=5\langle 1,0\rangle-1 \cdot\langle 0,1\rangle$

$$
=5 \vec{v}_{1}-1 \cdot \vec{v}_{2}
$$

(2) In Tuesday, we showed that $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$ are linearly independent.
By (1) \& (2), $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$ form a basis for $V=\mathbb{R}^{2}$.

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 2,1\rangle, \vec{V}_{2}=\langle-1,1\rangle$
(1) Previously we showed that \vec{V}_{1}, \vec{V}_{2} span $V=\mathbb{R}^{2}$, in fact

We showed that any vector $\langle a, b\rangle$ can be written as

$$
\begin{aligned}
\langle a, b\rangle & =\left(\frac{1}{3} a+\frac{1}{3} b\right) \cdot\langle 2,1\rangle+\left(-\frac{1}{3} a+\frac{2}{3} b\right) \cdot\langle-1,1) \\
& =\left(\frac{1}{3} a+\frac{1}{3} b\right) \cdot \overrightarrow{V_{1}}+\left(-\frac{1}{3} a+\frac{2}{3} b\right) \cdot \vec{V}_{2}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
\langle 3,6\rangle & =3 \cdot\langle 2,1\rangle+3 \cdot\langle-1,1\rangle \\
& =3 \cdot \overrightarrow{v_{1}}+3 \cdot \vec{v}_{2}
\end{aligned}
$$

(2) We never checked linear independence. We need to solve

$$
c_{1} \vec{V}_{1}+c_{2} \vec{v}_{2}=\vec{O}
$$

for c_{1}, c_{2}.
This becomes

$$
c_{1}\langle 2,1\rangle+c_{2}\langle-1,1\rangle=\langle 0,0\rangle
$$

which is

$$
\begin{aligned}
& \text { Which is } \\
& \left\langle 2 c_{1}-c_{2}, c_{1}+c_{2}\right\rangle=\langle 0,0\rangle
\end{aligned}
$$

This gives

$$
\begin{array}{r}
2 c_{1}-c_{2}=0 \\
c_{1}+c_{2}=0
\end{array}
$$

Solving time!

$$
\begin{aligned}
& \text { Solving time! } \\
& \left(\begin{array}{rr|r}
2 & -1 & 0 \\
1 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \mapsto R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 0 \\
2 & -1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{-1 / 3 R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

This gives

$$
\begin{align*}
c_{1}+c_{2} & =0 \tag{1}\\
c_{2} & =0 \tag{2}
\end{align*}
$$

So,
(2) $C_{2}=0$
(1) $c_{1}=-c_{2}=-(0)=0$.

Thus, the only solution to

$$
\vec{c}_{1} \vec{v}_{1}+\vec{c}_{2} \vec{v}_{2}=\overrightarrow{0}
$$

is $c_{1}=0, c_{2}=0$.
So, $\vec{V}_{1}=\langle 2,1\rangle, \vec{V}_{2}=\langle-1,1\rangle$
are linearly independent.
By the above, we know that $\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$ are a basis for $V=\mathbb{R}^{2}$.

Theorem: Let V be a vector space over a field F. Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ be a basis with n vectors for V.
Then any other basis for V will also have n vectors in it.

PAll bases for V have the Spume number of vectors in them

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
basis \#1: $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$

$$
\begin{aligned}
& \text { basis \#1: } \\
& \text { basis \#2: } \\
& \vec{V}_{1}
\end{aligned}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle
$$

Both bases have $n=2$ vectors. By the theorem, any basis for $V=\mathbb{R}^{2}$ will have 2 vectors in it.

Def: Let V be a vector space over a field F. If there exists a basis $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ with n vectors
for V, then we say that V is finite-dimensional a has dimension n and we write $\operatorname{dim}(v)=n$.

Ex: $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$
because $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$ is a basis with $n=2$ vectors.

Ex: $V=P_{2} \varangle$ all polynomials of degree ≤ 2

$$
F=\mathbb{R}
$$

$$
V=P_{2}
$$

$$
\begin{array}{ccc}
1-2 x+x^{2} & 5-x^{2} \\
0 & x & 15 x^{2}-x \\
0 & 0 & 0
\end{array}
$$

Let $\vec{v}_{1}=1, \vec{v}_{2}=x, \vec{v}_{3}=x^{2}$.
Claim: $\vec{V}_{1}=1, \vec{V}_{2}=x, \vec{V}_{3}=x^{2}$
is a basis for $V=P_{2}$
pf of claim:
(1) (spanning) Given a vector $\vec{v}=a+b x+c x^{2}$ we can write

$$
\begin{aligned}
\vec{v} & =a \cdot 1+b \cdot x+c \cdot x^{2} \\
& =a \cdot \vec{v}_{1}+b \cdot \vec{v}_{2}+c \cdot \vec{v}_{3}
\end{aligned}
$$

So, $\vec{V}_{1}=1, \vec{V}_{2}=x, \vec{V}_{3}=x^{2} \operatorname{span} V=P_{2}$
Ex:

$$
\frac{E x:}{5-x+3 x^{2}=5 \cdot \vec{v}_{1}-1 \cdot \vec{v}_{2}+3 \cdot \vec{v}_{3}}
$$

(2) (linear independence) We need to solve

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{V}_{3}=\overrightarrow{0}
$$

for c_{1}, c_{2}, c_{3}.
This becomes

$$
c_{1} \cdot 1+c_{2} \cdot x+c_{3} \cdot x^{2}=0+0 x+0 x^{2}
$$

which gives $c_{1}=0, c_{2}=0, c_{3}=0$. The only solution to

$$
\begin{aligned}
& \text { only solution to } \\
& c_{1} \vec{V}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{V}_{3}=\overrightarrow{0}
\end{aligned}
$$

is $c_{1}=0, c_{2}=0, c_{3}=0$
which says that

$$
\text { which says } \vec{\rightharpoonup}_{\vec{V}_{1}}=1, \vec{V}_{2}=x, x^{2}
$$

are linearly independent.
By (1) and (2) we have that $\vec{v}_{1}=1, \vec{v}_{2}=x, \vec{v}_{3}=x^{2}$
are a basis for $V=P_{2}$
Claim

Note: $\operatorname{dim}\left(P_{2}\right)=3$
since $\vec{V}_{1}=1, \vec{V}_{2}=x, \vec{v}_{3}=x^{2}$
is a basil for P_{2} with 3 vectors.

