Math 2550-03

$$
3 / 26 / 24
$$

Def: Let V be a vector space over a field F.
over a field F_{1}, be vectors in V.
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be \vec{V}_{n} are
We say that $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ are linearly dependent if there exist scalars/numbers $C_{1}, c_{2}, \ldots, C_{n}$ from F, that are not all equal to 0 (but some can be zero) where

$$
\begin{aligned}
& \text { (but some can be } \\
& \vec{c}_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+\vec{c}_{n}=\overrightarrow{0}
\end{aligned}
$$

If no such numbers exist then the vectors are called linearly independent.

Reformulated:

$$
\frac{\text { formulated: }}{c_{1} \vec{V}_{1}+\vec{c}_{2} \overrightarrow{V_{2}}}+\cdots+\vec{c}_{n} \vec{V}_{n}=\overrightarrow{0}
$$

always has at least one solution, which is $C_{1}=0, c_{2}=0, \ldots, c_{n}=0$.
If that the only solution, the vectors are linearly independent.
If thees more solutions then the vectors are linearly dependent.

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{V}_{1}=\langle 3,-5\rangle, \vec{V}_{2}=\langle-6,10\rangle$
Some solutions to

$$
\begin{aligned}
& \text { solutions } \\
& c_{1} \\
& v_{1}
\end{aligned} \vec{c}_{2} \vec{v}_{2}=\overrightarrow{0}
$$

are:

$$
\frac{0 \cdot\langle 3,-5\rangle+0 \cdot\langle-6,10\rangle=\langle 0,0\rangle}{0 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2}=\overrightarrow{0} \text { with } \begin{array}{l}
c_{1}=0 \\
c_{2}=0
\end{array}}
$$

$$
\frac{1 \cdot\langle 3,-5\rangle+\frac{1}{2} \cdot\langle-6,10\rangle=\langle 0,0\rangle}{1 \cdot \vec{v}_{1}+\frac{1}{2} \cdot \vec{v}_{2}=\overrightarrow{0}} \begin{aligned}
& c_{1}=1, c_{2}=1 / 2
\end{aligned}
$$

The vectors $\vec{v}_{1}=\langle 3,-5\rangle, \vec{v}_{2}=\langle-6,10\rangle$ are linearly dependent because of $1 \cdot \vec{v}_{1}+\frac{1}{2} \cdot \vec{v}_{2}=\overrightarrow{0}$.
Note: From $1 \cdot \vec{v}_{1}+\frac{1}{2} \vec{v}_{2}=\overrightarrow{0}$ we can get
\vec{v}_{1} is a linear

$$
\begin{aligned}
& \text { yet } \vec{v}^{\overrightarrow{2}}<\begin{array}{l}
\overrightarrow{v_{1}} \text { is a linear } \\
\text { combs of } \vec{v}_{2}
\end{array} \\
& \vec{v}_{1}=-\frac{1}{2} \vec{v}_{2}<\begin{array}{l}
\vec{v}_{2} \text { is a linear } \\
\text { combo of } \vec{v}_{1}
\end{array} \\
& \vec{v}_{2}=-2 \vec{v}_{1} \in \begin{array}{l}
\text { am }
\end{array}
\end{aligned}
$$

$E x: V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{V}_{1}=\langle 1,-1\rangle, \vec{V}_{2}=\langle 0,1\rangle, \vec{V}_{3}=\langle 2,-1\rangle$.

$$
\begin{aligned}
& \text { Then, } \\
& \underbrace{2 \cdot\langle 1,-1\rangle+1 \cdot\langle 0,1\rangle-1 \cdot\langle 2,-1\rangle=\langle 0,0\rangle}_{\begin{array}{c}
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0} \\
\text { with } c_{1}=2, c_{2}=1, c_{3}=-1
\end{array}}
\end{aligned}
$$

$$
\text { with } c_{1}=2, c_{2}=1, c_{3}=-1
$$

So, $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are linearly dependent.
Note: $\vec{V}_{1}=-\frac{1}{2} \vec{V}_{2}+\frac{1}{2} \vec{V}_{3} \leftarrow\left\{\begin{array}{l}\overrightarrow{V_{1}} \text { is a linear }\end{array}\right.$ $\left.\begin{array}{l}\vec{v}_{2}=-2 \vec{v}_{1}+1 \vec{v}_{3} \\ \vec{v}_{3}=2 \vec{v}_{1}+1 \cdot \vec{v}_{2}\end{array}\right\} \begin{aligned} & \text { other } \\ & \text { linear } \\ & \text { combos }\end{aligned}$

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$

$$
\frac{\vec{V}_{1}}{\vec{V}_{1}}=\langle 1,1\rangle, \vec{V}_{2}=\langle 6,7\rangle, \vec{V}_{3}=\langle-2,-2\rangle
$$

These vectors are linearly dependent since
are not all zero
Note: $\vec{v}_{3}=-2 \vec{v}_{1}+\vec{O}_{2}$

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{V}_{1}=\langle 1,0\rangle \vec{V}_{2}=\langle 0,1\rangle$.
Are \vec{v}_{1}, \vec{v}_{2} lin. dep or lin. ind.? We need to solve

$$
\begin{aligned}
& \text { need to solve } \overrightarrow{{ }_{e}} \overrightarrow{0} \\
& \vec{v}_{1}+c_{2} v_{2}=\overrightarrow{0} \\
& \text { becomes }
\end{aligned}
$$

which becomes

$$
\begin{aligned}
& \text { ich becomes } \\
& c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle=\langle 0,0\rangle
\end{aligned}
$$

which becomes

$$
\begin{aligned}
& \text { ich becomes } \\
& \left\langle c_{1}, 0\right\rangle+\left\langle 0, c_{2}\right\rangle=\langle 0,0\rangle
\end{aligned}
$$

which gives

$$
\begin{gathered}
c h \text { give } \\
\left\langle c_{1}, c_{2}\right\rangle=\langle 0,0\rangle \\
\end{gathered}
$$

So, $c_{1}=0, c_{2}=0$.
Thus the only sol. to $\vec{c}_{1} \vec{v}_{1}+{c_{2}}_{2} \vec{v}_{2}=\overrightarrow{0}$ is $c_{1}=0, c_{2}=0$. So, \vec{v}_{1}, \vec{v}_{2} are linearly independent.

Ex: Let $V=\mathbb{R}^{3}, F=\mathbb{R}$.
Let $\vec{v}_{1}=\langle 1,1,1\rangle, \vec{V}_{2}=\langle 1,0,1\rangle$,

$$
\vec{v}_{3}=\left\langle 1, \frac{4}{3}, 1\right\rangle .
$$

Are these vectors lin. ind. or lin. dep??
We want the solutions to

$$
\text { le want the } \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

$$
\begin{aligned}
& \text { which is } \\
& c_{1}\langle 1,1,1\rangle+c_{2}\langle 1,0,1\rangle+c_{3}\left\langle 1, \frac{4}{3}, 1\right\rangle=\langle 0,0,0\rangle \\
& \text { becomes }
\end{aligned}
$$

which is
which becomes

$$
\begin{aligned}
& c_{1} \text { which becomes } \\
& \left.\left\langle c_{1}, c_{1}, c_{1}\right\rangle+\left\langle c_{2}, 0, c_{2}\right\rangle+\left\langle c_{3}, \frac{4}{3} c_{3}, c_{3}\right\rangle=\langle 0,0,0\rangle\right\rangle \\
& \text { gives }
\end{aligned}
$$

Which gives

This gives

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}=0 \\
& c_{1}+\frac{4}{3} c_{3}=0 \\
& c_{1}+c_{2}+c_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solving: } \\
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
1 & 0 & 4 / 3 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \xrightarrow[-R_{1}+R_{3} \rightarrow R_{3}]{-R_{1}+R_{2}+R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & -1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & -1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{align*}
\left(c_{1}\right)+c_{2}+c_{3} & =0 \tag{10}\\
\left.c_{2}\right)-\frac{1}{3} c_{3} & =0 \tag{2}\\
0 & =0
\end{align*}
$$

leading: C_{1}, c_{2}
free: c_{3} (3)

We get

$$
\begin{align*}
& c_{1}=-c_{2}-c_{3} \tag{1}\\
& c_{2}=\frac{1}{3} c_{3} \tag{2}\\
& c_{3}=t \tag{3}
\end{align*}
$$

Solving:
(3) $c_{3}=t$
(2) $c_{2}=\frac{1}{3} c_{3}=\frac{1}{3} t$
(1) $c_{1}=-c_{2}-c_{3}=-\frac{1}{3} t-t=-\frac{4}{3} t$

Plugging back into

$$
\begin{aligned}
& \text { aging back into } \\
& \vec{c}_{1} \overrightarrow{v_{1}}+\vec{c}_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
\end{aligned}
$$

gives

$$
\left(-\frac{4}{3} t\right) \vec{v}_{1}+\left(\frac{1}{3} t\right) \vec{v}_{2}+(t) \vec{v}_{3}=\overrightarrow{0}
$$

for every t.

Plug in $t=1$ gives:

$$
-\frac{4}{3} \vec{v}_{1}+\frac{1}{3} \vec{v}_{2}+1 \cdot \vec{v}_{3}=\overrightarrow{0}
$$

So, $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are linearly dependent.

Ex:

$$
\begin{aligned}
& V=P_{2} \leftrightarrow \underbrace{\begin{array}{c}
\text { of degree } \\
\text { vp to } 2
\end{array}}_{\text {polynomials }} \\
& F=\mathbb{R}
\end{aligned}
$$

Let $\vec{V}_{1}=1, \vec{V}_{2}=1+x, \vec{v}_{3}=1+x+x^{2}$
Are these vectors lin. dep. or lin, ind.?

We need to solve

$$
\begin{aligned}
& \text { Ne need to solve } \vec{v}^{\vec{v}}=\overrightarrow{0} \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=
\end{aligned}
$$

which becomes

$$
\begin{aligned}
& \text { which becomes } \\
& c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)=\underbrace{0+0 x+0 x^{2}}_{\overrightarrow{0}}
\end{aligned}
$$

which becomes

$$
\begin{aligned}
& \text { which becomes } \\
& c_{1}+c_{2}+c_{2} x+c_{3}+c_{3} x+c_{3} x^{2}=0+0 x+0 x^{2}
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \text { which gives } \\
& \left(c_{1}+c_{2}+c_{3}\right)+\left(c_{2}+c_{3}\right) x+c_{3} x^{2}=0+0 x+0 x^{2}
\end{aligned}
$$

which gives

$$
\begin{array}{r}
c_{1}+c_{2}+c_{3}=0 \tag{2}\\
c_{2}+c_{3}=0 \\
c_{3}=0
\end{array}
$$

(1) reduced
(3) with no free variables

Solving gives:
(3) $c_{3}=0$
(2) $c_{2}=-c_{3}=-0=0$
(1) $c_{1}=-c_{2}-c_{3}=-0-0=0$

Thus the only solution to

$$
\begin{aligned}
& \text { is the only sol } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\vec{c}_{3}=\overrightarrow{0} \\
& c_{2}=0
\end{aligned}
$$

is $c_{1}=0, c_{2}=0, c_{3}=0$.
So, $\vec{v}_{1}=1, \vec{v}_{2}=1+x, \vec{v}_{3}=1+x+x^{2}$ are linearly independent.

