Math 2550-03

$$
3 / 21 / 24
$$

Topic 7-Bases
This topic is about creating coordinate systems for vector spaces.

Def: Let $V$ be a vector space over a field $F$. Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be vectors in $V$.
(1) We say that a vector $\vec{V}$ is in the span of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ if we can write

$$
\vec{V}=\underbrace{c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+\cdots+c_{n} \vec{V}_{n}}_{\text {this is called a linear }}
$$ combination of $\vec{v}_{1}, \vec{v}_{2}$ ) '" $\vec{v}_{n}$

where $c_{1}, c_{2}, \ldots, c_{n}$ are scalars from $F$.
(2) The span of $\vec{V}_{1}, \overrightarrow{V_{2}}, \ldots, \vec{V}_{n}$ is the set

$$
\begin{aligned}
& \text { the set } \\
& \operatorname{span}\left(\left\{\vec{V}_{1}, \vec{V}_{2}, \ldots \vec{V}_{n}\right\}\right)^{\&}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{pan}\left(\left\{\vec{V}_{1}, V_{2}, \ldots, V_{n}\right\}\right) \\
& =\underbrace{\left\{c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+\ldots+\vec{c}_{n} \vec{V}_{n}\right.}_{l \mid l} \begin{array}{l}
c_{1}, c_{2}, \ldots, c_{n} \\
\text { are in } F
\end{array}\}
\end{aligned}
$$

set of all, linear combos of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$
(3) If $W=\operatorname{span}\left(\left\{\vec{V}_{1}, \overrightarrow{V_{2}}, \cdots, \overrightarrow{V_{n}}\right\}\right)$ then we say that $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$
span $W$.

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 1,0\rangle$.
Q: Is $\vec{w}=\langle 7,0\rangle$ in the span of $\vec{V}_{1} P_{0}$
That is, can we write

$$
\begin{aligned}
\text { That is, can } \\
\begin{aligned}
\langle 7,0\rangle & =c_{1}\langle 1,0\rangle \\
\vec{\omega} & =c_{1} \vec{v}
\end{aligned} \\
\text { Yes, }\langle 7,0\rangle=7\langle 1,0\rangle
\end{aligned}
$$

That is, $\vec{\omega}=7 \vec{v}_{1}$.
So, $\vec{\omega}$ is in the span of $\vec{v}_{1}$.
Q: Is $\vec{z}=\langle 6,-4\rangle$ in the
span of $\vec{V}_{1}=\langle 1,0\rangle \vec{T}_{0}$
That is, can we write

$$
\begin{aligned}
& \text { at is, can we write } \\
& \langle 6,-4\rangle=c_{1}\langle 1,0\rangle \& \vec{z}=c_{1}, v_{1}
\end{aligned}
$$

No, because you would need

$$
\langle 6,-4\rangle=\left\langle c_{1}, 0\right\rangle
$$

Q: What is the span of $\vec{V}_{1}=\langle 1,0\rangle ?_{0}^{?}$

$$
\begin{aligned}
\operatorname{span}\left(\left\{\vec{v}_{1}\right\}\right) & =\left\{c_{1} \vec{v}_{1} \mid c_{1} \in \mathbb{R}\right\} \\
& =\left\{c_{1}\langle 1,0\rangle \mid c_{1} \in \mathbb{R}\right\} \\
& =\left\{\left\langle c_{1}, 0\right\rangle \mid c_{1} \in \mathbb{R}\right\}
\end{aligned}
$$

So, the span of $\vec{v}_{1}$ consists of all vectors of the form $\langle\langle, 0\rangle$.

$E x:$ Let $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$.
Q: Is $\vec{\omega}=\langle 2,-1\rangle$ in the span of $\vec{v}_{1}, \vec{v}_{2}$ ?
Yes, because

$$
\begin{aligned}
& \text { Yes, because } \\
& \begin{aligned}
\langle 2,-1\rangle & =\underbrace{2 \cdot\langle 1,0\rangle+(-1) \cdot\langle 0,1\rangle}_{\vec{\omega}}=\vec{v}_{1}+c_{2} \vec{v}_{2} \\
\vec{\omega} & =\vec{v}_{1}-1 \cdot \vec{v}_{2}
\end{aligned}
\end{aligned}
$$

Q: What is the span of

$$
\therefore \text { What is } \vec{V}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle
$$

$\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)$

$$
\begin{aligned}
& \operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right) \\
& =\{\underbrace{c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle}_{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}} \mid c_{1}, c_{2} \in \mathbb{R}\} \\
& =\left\{\left\langle c_{1}, 0\right\rangle+\left\langle 0, c_{2}\right\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left\langle c_{1}, c_{2}\right\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\mathbb{R}^{2}
\end{aligned}
$$

Another way to see that any vector $\langle a, b\rangle$ is in the span of $\vec{v}_{1}, \vec{v}_{2}$ is with the formula

$$
\begin{aligned}
& f \vec{v}_{1} \hat{v}_{2} \text { is with the Torn } \\
& \langle a, b\rangle=\underbrace{a \cdot\langle 1,0\rangle+b \cdot\langle 0,1\rangle} \\
& \langle a, b\rangle=\overrightarrow{v_{1}}+b \cdot \vec{v}_{2}
\end{aligned}
$$

Thus, $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$ span all of $\mathbb{R}^{2}$.
picture of $\langle 2,-1\rangle=2 \vec{V}_{1}-1 \cdot \vec{V}_{2}$


Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$
An example vector in the span of $\vec{v}_{1}$ ) $\vec{v}_{2}$ is


Claim: Every vector in $\mathbb{R}^{2}$ is in the span of $\vec{v}_{1}=\langle 2,1\rangle$ and $\vec{v}_{2}=\langle-1,1\rangle$. That is, $\vec{v}_{1}, \vec{v}_{2}$ span all of $\mathbb{R}^{2}$
proof: Let $\langle a, b\rangle$ be some vector from $\mathbb{R}^{2}$. Let's show that can write

$$
\begin{aligned}
& \text { show that can } \\
& \langle a, b\rangle=\underbrace{c_{2}\langle-1,1\rangle}_{\substack{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \\
\text { becomes }}}
\end{aligned}
$$

This equation becomes

$$
\begin{aligned}
& \text { his equation becomes } \\
& \langle a, b\rangle=\left\langle 2 c_{1}, c_{1}\right\rangle+\left\langle-c_{2}, c_{2}\right\rangle
\end{aligned}
$$

which gives

$$
\left.\underset{\uparrow \uparrow}{\langle a, b\rangle} \begin{array}{c}
a \\
\uparrow
\end{array} \underset{\uparrow}{2} c_{1}-c_{2}, c_{1}+c_{2}\right\rangle
$$

This gives

$$
\begin{aligned}
2 c_{1}-c_{2} & =a \\
c_{1}+c_{2} & =b
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let's solve: } \\
& \xrightarrow{\left(\begin{array}{cc|c}
2 & -1 & a \\
1 & 1 & b
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & b \\
2 & -1 & a
\end{array}\right)} \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & b \\
0 & -3 & a-2 b
\end{array}\right) \\
& -\frac{1}{3} R_{2} \rightarrow R_{2} \\
&
\end{aligned}\left(\begin{array}{cc|c}
1 & 1 & b \\
0 & 1 & -\frac{1}{3} a+\frac{2}{3} b
\end{array}\right) .
$$

This gives:

$$
\begin{align*}
c_{1}+c_{2} & =b  \tag{1}\\
c_{2} & =-\frac{1}{3} a+\frac{2}{3} b \tag{2}
\end{align*}
$$

(2)

$$
c_{2}=-\frac{1}{3} a+\frac{2}{3} b
$$

(1)

$$
\begin{aligned}
c_{1}=b-c_{2} & =b-\left(-\frac{1}{3} a+\frac{2}{3} b\right) \\
& =\frac{1}{3} a+\frac{1}{3} b
\end{aligned}
$$

Plugging back into

$$
\begin{aligned}
& \text { gging back into } \\
& \langle a, b\rangle=c_{1}\langle 2,1\rangle+c_{2}\langle-1,1\rangle
\end{aligned}
$$

gives

$$
\begin{aligned}
& \text { gives } \\
& \langle a, b\rangle=\left(\frac{1}{3} a+\frac{1}{3} b\right)\langle 2,1\rangle+\left(-\frac{1}{3} a+\frac{2}{3} b\right)\langle-1,1\rangle \\
&
\end{aligned}
$$

Thus, every vector $\langle a, b\rangle$ is in the span of $\vec{V}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$

Claim

$$
\begin{aligned}
& \text { Ex: }\langle a, b\rangle=\langle 0,2\rangle \\
& \begin{aligned}
\langle 0,2\rangle & =\left(\frac{1}{3} \cdot 0+\frac{1}{3} \cdot 2\right) \cdot\langle 2,1\rangle \\
& +\left(-\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 2\right) \cdot\langle-1,1\rangle \\
\langle 0,2\rangle & =\frac{2}{3} \cdot\langle 2,1\rangle+\frac{4}{3} \cdot\langle-1,1\rangle
\end{aligned}
\end{aligned}
$$

Theorem: Let V be a vector space over a field $F$.
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be in $V$.
Then, $\operatorname{span}\left(\left\{\vec{V}_{1}, \vec{V}_{2}, \cdots, \vec{V}_{n}\right\}\right)$
is a subspace of $V$.
picture when $n=3$

$$
\begin{aligned}
& \operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}\right) \\
& \vec{v}_{1}=1 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2}+0 \cdot \vec{v}_{3} \\
& \dot{v}_{2}=0 \cdot \overrightarrow{v_{1}}+1 \cdot \vec{v}_{2}+0 \cdot \vec{v}_{3} \\
& \dot{\overrightarrow{0}}=0 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2}+0 \cdot \vec{v}_{3} \\
& 10 \overrightarrow{v_{1}}+\frac{1}{2}+\vec{v}_{2}+\frac{\vec{v}_{3}}{10} \vec{v}_{3}, \vec{v}_{2} \\
& 0
\end{aligned}
$$

