Math 2550-03

$$
3 / 19 / 24
$$

Ex: Let $F=\mathbb{R} \leftarrow$ scalars and

$$
\begin{array}{cc}
\hline \text { field } & F=\mathbb{R} \\
0 & 1 \\
0 & .2 \\
-1 & 0 \pi \\
\hline
\end{array}
$$

vectross $V=P_{2}$

$1-2 x+3 x^{2}$	
0	$1-x$
x^{2}	0
0	0
0	$0+0 x+0 x^{2}$

$$
\begin{aligned}
& V=P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\} \\
& \begin{array}{l}
x^{2}=0+0 x+1 x^{2} \\
2 \text { polynomials }
\end{array} \\
& =\left\{1-2 x+3 x^{2}, \underset{4}{7}, x^{2}, 1-x, \ldots\right\} \\
& 7=7+0 x+0 x^{2}
\end{aligned}
$$

example of adding vectors:

$$
\left(1-2 x+3 x^{2}\right)+(1-x)=2-3 x+3 x^{2}
$$

example of scaling a vector:

$$
5 \cdot\left(1-2 x+3 x^{2}\right)=5-10 x+15 x^{2}
$$

Now we define what a subspace is, which ends up being a vectors space inside of a vector space

Def: Let V be a vector space over a field F. Let W be a subset of V.
We say that W is a subspace of V if
(1) \vec{O} is in W.
(z) if \vec{w}_{1}, \vec{w}_{2} are
in w, then

$\vec{w}_{1}+\vec{w}_{2}$ is in w.
ω is closed under vector addition
(3) if \vec{w}_{3} is in w and α is a scalar in F, W is closed under then $\alpha \vec{\omega}_{3}$ is in ω. \qquad scaling

$$
w_{0} \vec{w}_{1} \vec{w}_{2} \vec{w}_{0}+\vec{w}_{2} \vec{w}_{3} \quad \alpha_{0} \vec{w}_{3}
$$

$\left.\begin{array}{l}\text { Ex: Let } F=\mathbb{R} \\ \text { and } V=\mathbb{R}^{2}\end{array}\right] \begin{aligned} & \text { vector } \\ & \text { space }\end{aligned}$
Let

$$
\begin{aligned}
& \text { Let } \begin{aligned}
W= & \{\langle x, 0\rangle \mid x \in \mathbb{R}\} \\
= & \{\langle 1,0\rangle,\langle 2,0\rangle,\langle-3,0\rangle, \\
& \left.\left\langle\frac{1}{2}, 0\right\rangle,\langle\pi, 0\rangle, \ldots\right\}
\end{aligned}
\end{aligned}
$$

$$
V=\mathbb{R}^{2}
$$

$$
=\begin{gathered}
\left.\mathbb{R}^{2} \quad \begin{array}{cc}
\langle 1,1\rangle & \langle 5,-10\rangle \\
\begin{array}{c}
\langle 1,0\rangle \\
\overrightarrow{0}=\langle 0,0\rangle
\end{array} & \langle 2,0\rangle \\
0 & \left\langle\frac{1}{2}, 0\right\rangle
\end{array}\right\rangle\langle\pi, \pi\rangle
\end{gathered}
$$

W is a subspace.
proof:
(1) Set $x=0$ in $\langle x, 0\rangle$ gives $\langle x, 0\rangle=\langle 0,0\rangle=\overrightarrow{0}$ So, $\overrightarrow{0}$ is in W.
(2) Let \vec{w}_{1}, \vec{w}_{2} be in w.

Then, $\vec{w}_{1}=\left\langle x_{1}, 0\right\rangle$ and $\vec{w}_{2}=\left\langle x_{2}, 0\right\rangle$ where $x_{1}, x_{2} \in \mathbb{R}$.
Then, $w_{1}+w_{2}=\left\langle x_{1}+x_{2}, 0\right\rangle$ is of the form $\langle x, 0\rangle$ and so $\overrightarrow{W_{1}}+\vec{w}_{2}$ is in W.
(3) Let \vec{w}_{3} be in W and α in $F=\mathbb{R}$.
Then, $\vec{w}_{3}=\left\langle x_{3}, 0\right\rangle$ where $x_{3} \in \mathbb{R}$.
Then, $\alpha \vec{w}_{3}=\alpha\left\langle x_{3}, 0\right\rangle$

$$
\begin{aligned}
& =\left\langle\alpha x_{3}, \alpha 0\right\rangle \\
& =\left\langle\alpha x_{3}, 0\right\rangle
\end{aligned}
$$

So, $\alpha \vec{w}_{3}$ is of the form $\langle x, 0\rangle$ and thus $\alpha \vec{w}_{3}$ is in W.

By (1), (2), (3), W is a subspace.

We just showed w is itself a vector space inside of the bigger vector space $V=\mathbb{R}^{2}$.
That's what subspace ends up meaning

Ex: Let $\left.\underset{\mathbb{R}^{2}}{F}=\mathbb{R}\right] \begin{aligned} & \text { vector } \\ & \text { space }\end{aligned}$ and $V=\mathbb{R}^{2}$.

Let

$$
\begin{aligned}
& \text { Let } \\
& \begin{aligned}
w & =\{\langle x, 1\rangle \mid x \in \mathbb{R}\} \\
& =\{\langle 1,1\rangle,\langle-\mid 0,1\rangle,\langle\pi, 1\rangle,\langle 0,1\rangle, \ldots\}
\end{aligned}
\end{aligned}
$$

$$
V=\mathbb{R}^{2}
$$

$$
\langle 4,6\rangle \quad\langle 0,0\rangle=\overrightarrow{0}
$$

$\langle 10,15\rangle$

To show that W is not a subspace, you give an example to show that either (1), (2), or (3) tails.

For example, $\overrightarrow{0}=\langle 0,0\rangle$ is not of the form $\langle x, 1\rangle$ and hence $\vec{O} \notin \omega$. So, (1) fails and W is not a subspace.

Or you could say that (2) fails, for example $\langle 2,1\rangle$ and $\langle 3,1\rangle$ are in ω, but

$$
\langle 2,1\rangle+\langle 3,1\rangle=\langle 5,2\rangle
$$

and $\langle 5,2\rangle$ is not in w. so w is not a subspace.

Ex: Let $F=\mathbb{R}$
and $V=M_{2,2}\left\{\begin{array}{c}\text { set of all } \\ 2 \times 2\end{array}\right.$
Let

$$
\left.\begin{array}{l}
W=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \left\lvert\, \begin{array}{l}
d=a+b \\
a, b, c, d \in \mathbb{R}
\end{array}\right.\right\} \\
=\{\underbrace{\left(\begin{array}{ll}
5 & 8 \\
1 & 8
\end{array}\right)}_{\text {in } W}, \underbrace{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)}_{\substack{\text { in } W \\
\text { since } 8=5+3 \\
0=0+0}}, \underbrace{\left(\begin{array}{cc}
-1 & -2 \\
5 & -3
\end{array}\right)}_{\begin{array}{l}
\text { in } w \\
\text { since } \\
-3=-1+(-2)
\end{array}}, \ldots 00
\end{array}\right\}
$$

$$
\begin{aligned}
& \frac{\text { Calculations: }}{\left(\begin{array}{ll}
5 & 3 \\
1 & 8
\end{array}\right)}+\underbrace{-1}_{\text {in } w} \begin{array}{c}
-2 \\
5
\end{array}-3)
\end{aligned}=\underbrace{\left(\begin{array}{ll}
4 & 1 \\
6 & 5
\end{array}\right)}_{\text {in } w}
$$

Let's prove that w is a subspace
(1) Setting $a=0, b=0, c=0, d=0$
gives $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\overrightarrow{0}$
and $d=a+b$.
So, \vec{O} is in W.
(2) Let $\vec{w}_{1}, \vec{w}_{2} \in W$.

Then, $\vec{w}_{1}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ where $d_{1}=a_{1}+b_{1}$
and $\vec{w}_{2}=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ where $d_{2}=a_{2}+b_{2}$
Then,

$$
\begin{aligned}
& \text { Then, } \\
& \vec{w}+\vec{w}_{2}=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right) \text { and } \\
& d_{1}+d_{2}=\left(\begin{array}{l}
\left.a_{1}+b_{1}\right)+\left(\begin{array}{l}
\left.a_{2}+b_{2}\right) \\
\\
\text { so }
\end{array} \vec{w}_{1}+\vec{w}_{2} \text { is in } w .\right.
\end{array}\right.
\end{aligned}
$$

So, $\vec{w}_{1}+\vec{w}_{2}$ is in w.
(3) Let \vec{w}_{3} be in w and α be a scalar in $F=\mathbb{R}$.
Then, $\vec{w}_{3}=\left(\begin{array}{ll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right)$
where $d_{3}=a_{3}+b_{3}$
Thus,

$$
\begin{array}{ll}
\text { Thus, } \\
\alpha \vec{w}_{3}
\end{array}=\left(\begin{array}{ll}
\alpha a_{3} & \alpha b_{3} \\
\alpha c_{3} & \alpha d_{3}
\end{array}\right)
$$

and $\alpha d_{3} \stackrel{\varnothing}{=} \alpha\left(a_{3}+b_{3}\right)=\alpha a_{3}+\alpha b_{3}$
Thus, $\alpha \vec{w}_{3}$ is in W.
By (1), (2), (3), W is a subspace of $V=M_{2,2}$

