Math 2550-03

$$
3 / 14 / 24
$$

$$
\pi \approx \frac{3.14159 \ldots}{3 / 14}
$$

Topic 6 -Vector Spaces

We are going to generalize What a scalar/number is and what a vector is

Def: A field consists of a set F of "scalars/numbers" and two operations t and . such that if x and y are in F then $x+y$ and $x \cdot y$ are in F.

The following properties must also hold:
(Fl) If a, b, c are in F, then:

$$
\begin{aligned}
& a+b=b+a \\
& a \cdot b=b \cdot a \\
& a+(b+c)=(a+b)+c
\end{aligned}
$$

$$
\begin{aligned}
& a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
& a \cdot(b+c)=a \cdot b+a \cdot c \\
& (b+c) \cdot a=b \cdot a+c \cdot a
\end{aligned}
$$

(F2) There exist unique elements 0 and 1 in F where

$$
x+0=0+x=x
$$

and $x \cdot 1=1 \cdot x=x$
for all x in F.
(F3) Let x be in F.
There exists a unique element $-x$ in F where

$$
x+(-x)=(-x)+x=0
$$

If $x \neq 0$, then there exists
a unique element x^{-1} in F where $x \cdot x^{-1}=x^{-1} \cdot x=1$

END OF DEF

Ex: $F=\mathbb{R} \leftarrow$ set of real
\mathbb{R} is a field using the usual adding and multiplying.

In this class \mathbb{R} will be the only field we use, but I will state definitions
and theorems for general fields.
Ex: The set of complex numbers (I is also a field.
A complex number is a number of the form $a+b i$ where $a \& b$ are real numbers And $i^{2}=-1$ or $i=\sqrt{-1}$

Ex: There are finite fields that are built with prime numbers and modular arithmetic

Now let's generalize vectors.

Def: A vector space V over a field F consists of a set of "vectors" V and a field F with two operations, "vector addition" t and "vector scaling" such that it $\vec{v}, \vec{\omega}, \vec{z}$ are vectors from V and α, β are scalars from F, then the following must hold:
(1) $\vec{V}+\vec{w}$ is in
(2) $\alpha \cdot \vec{v}$ is in V
adding
vectors gives a vector
(3) $\vec{v}+\vec{w}=\vec{\omega}+\vec{v}$
(4) $\vec{v}+(\vec{w}+\vec{z})=(\vec{v}+\vec{w})+\vec{z}$
(5) there exists a unique vector \vec{O} in V, called the $z e c o$ vector, where $\overrightarrow{0}+\vec{y}=\vec{y}+\overrightarrow{0}=\vec{y}$ for any vector \vec{y} from V.
(6) there exists a unique vector $-\vec{V}$ in V where

$$
\begin{aligned}
& -\vec{v} \text { in } V \text { where } \\
& \vec{v}+(-\vec{v})=(-\vec{v})+\vec{v}=\overrightarrow{0} \\
& \rightarrow
\end{aligned}
$$

(7) $1 \cdot \vec{v}=\vec{V}$
(8) $(\alpha \beta) \cdot \vec{v}=\alpha \cdot(\beta \cdot \vec{v})$
(9) $\alpha \cdot(\vec{v}+\vec{w})=\alpha \cdot \vec{v}+\alpha \cdot \vec{\omega}$
(10) $(\alpha+\beta) \cdot \vec{V}=\alpha \cdot \vec{V}+\beta \cdot \vec{V}$
END OF

DEF

Ex: Let $V=\mathbb{R}^{n}$ and $F=\mathbb{R}$.
Then, $V=\mathbb{R}^{n}$ is a vector
space over $F=\mathbb{R}$ using the usual vector adding and scaling.

Ex: Let $V=M_{2,2}$ be the set of 2×2 matrices with real number entries.

$$
\begin{aligned}
& \text { So, } \begin{aligned}
V=M_{2,2} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \\
= & \left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 2 \\
-1 & \pi
\end{array}\right),\left(\begin{array}{cc}
1 / 2 & 0 \\
0.7 & 1
\end{array}\right), \ldots\right\} \\
+ & \begin{array}{c}
\text { infinitely } \\
\text { many } \\
\text { more }
\end{array} \\
& \overrightarrow{0}=\binom{0}{0}
\end{aligned}
\end{aligned}
$$

Let $F=\mathbb{R}$.
Then, $V=M_{2,2}$ is a vector space over $F=\mathbb{R}$
using the usual matrix adding and scaling.

adding: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)=\left(\begin{array}{cc}a+e & b+f \\ c+y & d+h\end{array}\right)$
scaling: $\quad \alpha\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}\alpha a & \alpha b \\ \alpha c & \alpha d\end{array}\right)$

Ex: Let $n \geqslant 0$ be an integer. $[$ So, n can be $0,1,2,3,4, \ldots]$
Let $V=P_{n}$ be the set of all polynomials of degree $\leq n$.

Let $F=\mathbb{R}$.
Add and scale just like usual. Adding vectors:

$$
\begin{aligned}
& \frac{\text { Adding vectors: }}{\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)} \\
& =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
$$

Scaling:

$$
\begin{aligned}
& \alpha\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \\
& \quad=\left(\alpha a_{0}\right)+\left(\alpha a_{1}\right) x+\cdots+\left(\alpha a_{n}\right) x^{n}
\end{aligned}
$$

Equality:

$$
\frac{\text { Equality: }}{a_{0}+a_{1} x+\cdots+a_{n} x^{n}=b_{0}+b_{1} x+\cdots+b_{n} x^{n}}
$$

if and only if

$$
a_{0}=b_{0}, a_{1}=b_{1}, \ldots 1, a_{n}=b_{n}
$$

Zero vector:

$$
\overrightarrow{0}=0+0 x+0 x^{2}+\cdots+0 x^{n}
$$

Fact: $V=P_{n}$ is a vector space over $F=\mathbb{R}$

