Math 2550-03

$$
216124
$$

$$
\begin{aligned}
& \text { Ex: } \\
& \left(\begin{array}{cc}
1 & 2 \\
0 & -3
\end{array}\right)+\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right)=\left(\begin{array}{cc}
1+2 & 2+3 \\
0+4 & -3+5
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 & 5 \\
4 & 2
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & 0 \\
2 & 1 \\
-1 & -3
\end{array}\right)-\left(\begin{array}{cc}
2 & 3 \\
-1 & -2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1-2 & 0-3 \\
2-(-1) & 1-(-2) \\
-1-0 & -3-1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & -3 \\
3 & 3 \\
-1 & -4
\end{array}\right) \\
& (-2)\left(\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right)=\left(\begin{array}{ll}
(-2)(1) & (-2)(2) \\
(-2)(3) & (-2)(-4)
\end{array}\right)
\end{aligned}
$$

\(\underbrace{\left($$
\begin{array}{ll}1 & 2 \\
4 & 3\end{array}
$$\right)}_{2 \times 2}+\underbrace{\left($$
\begin{array}{cc}-2 & -4 \\
-6 & 8\end{array}
$$\right)}_{3 \times 2} $$
\begin{array}{l}\left(\begin{array}{l}1 \\
0 \\
5\end{array}
$$\right. \\

\hline\end{array}) \quad\)| Since the |
| :--- |
| matrices |
| are not |
| the same |
| size we we |
| say the |
| addition |
| is |
| unde fined |

Def: Let A be an $m \times r$ matrix and B be an $r \times n$ matrix. We define the Product of A and B, denoted by $A B$, to be the $m \times n$ matrix C Whose entry in row i and column j equals the dot product of the i-th row of A and the 5 -th column of B.

Ex: Calculate $A B$, if possible,

$$
\begin{aligned}
& \text { Where } \\
& A=\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0
\end{array}\right) \\
& A B=\underbrace{\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)}_{2 \times 2} \underbrace{\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0
\end{array}\right)}_{2 \times 3}
\end{aligned}
$$

(row 1 A) $0(\text { row } \mid A)^{\circ}($ row $\mid A)$.
$($ col 1 B) $(\operatorname{col} 2 B)(\operatorname{col} 3 B)$

$$
\begin{aligned}
& =\left(\begin{array}{lll}
(1)(1)+(2)(0) & (1)(2)+(2)(1) & (1)(-1)+(2)(0) \\
(-1)(1)+(0)(0) & (-1)(2)+(0)(1) & (-1)(-1)+(0)(0)
\end{array}\right) \\
= & \left(\begin{array}{ccc}
1 & 4 & -1 \\
-1 & -2 & 1
\end{array}\right)
\end{aligned}
$$

Ex: What if we tried BA with the same matrices?

Let's see why this doesn't work. Let's try to compute BA as above.

$$
B A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)
$$

(row 1 of B).
(col 1 of A)

not the same size. Cant do this dot product

Ex: Let $A=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $B=\left(\begin{array}{lll}0 & 1 & -3\end{array}\right)$ Calculate $\underbrace{A}_{3 \times 1} \underbrace{B}_{1 \times 3}$ if possible.

$$
\underbrace{3 \times 1}_{\text {same }} \uparrow A B \text { is } 3 \times 3
$$

$$
=\left(\begin{array}{ccc}
0 & 1 & -3 \\
0 & 2 & -6 \\
0 & -1 & 3
\end{array}\right)
$$

Ex: $C a n$ we calculate $B A$ Where $B=\left(\begin{array}{lll}0 & 1 & -3\end{array}\right)$ and $A=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ as above?

$$
\left.\begin{array}{rl}
& \left.\begin{array}{ccc}
\left(\begin{array}{lll}
\text { row } & 1 & B
\end{array}\right) \cdot \\
= & \left(\begin{array}{lll}
\left(\begin{array}{ll}
1 & 1
\end{array}\right. & A
\end{array}\right) \\
0 & 1 & -3
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
\end{array}\right)
$$

Note: In the above examples we saw that $A B \neq B A$.
In general, $A B=B A$ is not always true for matrices

Def: Let A be an $m \times n$ matrix. The transpose of A, denoted by A^{\top}, is defined to be the $n \times m$ matrix that results from interchanging the rows and columns of A. That is, the i-th row of A^{\top} is the i-th column of A. Or, the j-th column of A^{\top} is the j-th row of A.
Some people write A^{t} instead of A^{\top}

Ex:

$$
\begin{array}{ll}
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) & \left.\begin{array}{ll}
A & \text { is } \\
2 \times 3
\end{array}\right] \\
A^{\top}=\left(\begin{array}{cc}
\downarrow & 4 \\
1 & 5 \\
3 & 6
\end{array}\right) & \begin{array}{l}
A^{\top} \text { is } \\
3 \times 2 \\
\hline
\end{array}
\end{array}
$$

Ex:

$$
\begin{array}{ll}
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) & {\left[\begin{array}{ll}
A & \text { is } \\
3 \times 3
\end{array}\right]} \\
A^{\top}=\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right)
\end{array}
$$

Def: The $m \times n$ zero matrix is the $m \times n$ matrix where every entry is zero.
We denote this matrix by $O_{m \times n}$ or just by 0 if you don't want to mention the size.

$$
\begin{aligned}
& \text { Ex: } O_{2 \times 2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
& O_{3 \times 4}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& O_{1 \times 6}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Ex: Let $A=\left(\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right)$.
Then

$$
\begin{aligned}
& \text { Then } \\
& A+O_{2 \times 2}=\left(\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right)=A \\
& 0_{2 \times 2}+A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 2 \\
3 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & -1
\end{array}\right)=A
\end{aligned}
$$

So, $A+O_{2 \times 2}=A$
So the
zero and $O_{2 \times 2}+A=A$. matrix is like the number zero but in the land of matrices.

