Math 2550-03 z/29/24
(topic 4 continued...)
Last time we showed how to write a linear system in the form $A \vec{x}=\vec{b}$.
If A^{-1} exists then you can do this:

$$
\begin{aligned}
& A \vec{x}=\vec{b} \\
& I \vec{x} \\
&=\vec{x}
\end{aligned} \longrightarrow \begin{aligned}
& A^{-1} \overrightarrow{A x} \\
& I_{A}^{-1} \vec{b} \\
& \vec{x}
\end{aligned}=A^{-1} \vec{b}
$$

So, if A^{-1} exists then $\vec{x}=A^{-1} \vec{b}$ is the only solution to our system.

Ex: Find all the solutions to

$$
\begin{align*}
3 x+3 z & =9 \tag{*}\\
x+y+2 z & =-4 \\
-2 x+3 y & =5
\end{align*}
$$

Write $(*)$ as $\overrightarrow{A x}=\vec{b}$.

$$
A=\left(\begin{array}{ccc}
3 & 0 & 3 \\
1 & 1 & 2 \\
-2 & 3 & 0
\end{array}\right), \vec{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \vec{b}=\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right)
$$

Check that $\overrightarrow{A x}=\vec{b}$ encodes ($*$)

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & 0 & 3 \\
1 & 1 & 2 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right) \leftarrow \overrightarrow{A x}=\vec{b} \\
\left(\begin{array}{cc}
3 x & +3 z \\
x+y+2 z \\
-2 x+3 y
\end{array}\right) & =\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right) \leftarrow\left(\begin{array}{c}
\text { same } \\
\text { as } \\
\text { (*) }
\end{array}\right.
\end{aligned}
$$

Thus ($*$) is equivalent to

$$
\underbrace{\left(\begin{array}{ccc}
3 & 0 & 3 \\
1 & 1 & 2 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)}_{A \vec{x}}=\underbrace{\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right)}_{\vec{b}}
$$

Previously, we showed that

$$
A^{-1}=\left(\begin{array}{ccc}
2 & -3 & 1 \\
4 / 3 & -2 & 1 \\
-5 / 3 & 3 & -1
\end{array}\right)
$$

Multiply by A^{-1} on the left gives

$$
\begin{aligned}
& I_{3} \\
& \underbrace{\left(\begin{array}{ccc}
2 & -3 & 1 \\
4 / 3 & -2 & 1 \\
-5 / 3 & 3 & -1
\end{array}\right)\left(\begin{array}{ccc}
3 & 0 & 3 \\
1 & 1 & 2 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)}_{A^{-1} A \vec{x}}=\underbrace{\left(\begin{array}{ccc}
2 & -3 & 1 \\
4 / 3 & -2 & 1 \\
-5 / 3 & 3 & -1
\end{array}\right)\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right)}_{A^{-1} \vec{b}}
\end{aligned}
$$

So we get

$$
\left.\begin{array}{l}
I_{3}^{0} \text { we get } \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
I_{3} \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
2 & -3 & 1 \\
4 / 3 & -2 & 1 \\
-5 / 3 & 3 & -1
\end{array}\right)\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right)
$$

This becomes

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
(2)(9)+(-3)(-4)+(1)(5) \\
(4 / 3)(9)+(-2)(-4)+(1)(5) \\
(-5 / 3)(9)+(3)(-4)+(-1)(5)
\end{array}\right)
$$

This will give

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{cc}
3 & 5 \\
2 & 5 \\
-3 & 2
\end{array}\right)
$$

So the only answer to (x) is

$$
x=35, y=25, z=-32
$$

To pic 5-Determinants
The determinant will allow us to detect when a square matrix has an inverse.

Def: Let A be an $n \times n$ matrix. The matrix $A_{i j}$ is defined to be the $(n-1) \times(n-1)$ matrix obtained by removing row i and column j from A

Ex:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

$$
\begin{aligned}
& A_{22}=\left(\begin{array}{ll}
1 & 3 \\
7 & 9
\end{array}\right) \leftarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)=A \\
& A_{13}=\left(\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right) \leftarrow\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)=A
\end{aligned}
$$

Factorial is a recursive function

$$
\begin{aligned}
& n!= \begin{cases}1 & \text { if } n=0 \\
n \cdot((n-1)!) & \text { if } n \geqslant 1\end{cases} \\
& 2!=2 \cdot 1!=2 \cdot 1 \cdot 0!=2 \cdot 1 \cdot 1=2
\end{aligned}
$$

Determinant is also recursive!

Def: Let A be an $n \times n$ matrix. Let $a_{i j}$ be the number in A located at row i, column j.
Define the determinant of A, denoted by $\operatorname{det}(A)$, as follows:
(1) If $n=1$ and $A=\left(a_{11}\right)$, then $\operatorname{det}(A)=a_{11}$.
(2) If $n=2$ and $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$
then $\operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12}$

(3) If $n \geqslant 3$, then pick a column j to "expand on" and define

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} \cdot a_{i j} \cdot \operatorname{det}\left(A_{i j}\right)
$$

sum over rows i with column j fixed
This called expanding on column j.
Note: In step 3, you can instead expand on a row i and calculate

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} \cdot a_{i j} \cdot \operatorname{det}\left(A_{i j}\right)
$$

sums over the columns j row is is fixed

Note: It doesn't matter what row or column you pick in step 3, you'll always get the same answer at the end.
Note: Another notation for det is using bass like absolute value. Like this:

$$
\begin{aligned}
& \text { Me this: } \\
& \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|
\end{aligned}
$$

Ex:

$$
\begin{gathered}
\operatorname{det}(11)=11 \\
|11|=11
\end{gathered}
$$

Ex:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
1 & -2 \\
3 & -6
\end{array}\right) & =\underbrace{(1)(-6)-(3)(-2)}_{\left(\begin{array}{r}
1 \\
3
\end{array}-2\right)}) \\
& =0
\end{aligned}
$$

Ex: $A=\left(\begin{array}{ccc}3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2\end{array}\right)$
Expand on column $j=2$
$\left(\begin{array}{ccc}3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2\end{array}\right)$

$$
\operatorname{det}(A)=\sum_{i=1}^{3}(-1)^{i+2} \cdot a_{i 2} \cdot \operatorname{det}\left(A_{i 2}\right)
$$

sum over rows i
Keep column $\bar{j}=2$

$$
\begin{aligned}
& \text { keep column } j=2 \\
&=(-1)^{1+2} \cdot a_{12} \cdot \operatorname{det}\left(A_{12}\right) \in \begin{array}{l}
i=1 \\
\operatorname{term}
\end{array} \\
&+(-1)^{2+2} \cdot a_{22} \cdot \operatorname{det}\left(A_{22}\right) \in\left(\begin{array}{l}
i=2 \\
\operatorname{term}
\end{array}\right. \\
&+(-1)^{3+2} \cdot a_{32} \cdot \operatorname{det}\left(A_{32}\right) \\
& i=3 \\
& \operatorname{term}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)(1)\left|\begin{array}{cc}
-2 & 3 \\
5 & -2
\end{array}\right| \leftarrow\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
5 & 4 & -2
\end{array}\right) \\
& +(1)(-4)\left|\begin{array}{cc}
3 & 0 \\
5 & -2
\end{array}\right| \leftarrow\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4) \\
5 & 4 & -2
\end{array}\right) \\
& +(-1)(4)\left|\begin{array}{cc}
3 & 0 \\
-2 & 3
\end{array}\right|+\left(\begin{array}{ccc}
3 & 1 & 0 \\
-2 & -4 & 3 \\
-5 & (4) & -2
\end{array}\right) \\
& =(-1) \cdot[(-2)(-2)-(3)(5)] \\
& +(-4) \cdot[(3)(-2)+(0)(5)] \\
& +(-4) \cdot[(3)(3)+(0)(-2)] \\
& =-1
\end{aligned}
$$

PICTURE WAY TO DETERMINE $(-1)^{i+j}$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right)}_{\left.\begin{array}{ccc}
(-1)^{1+1} & (-1)^{1+2} & (-1)^{1+3} \\
(-1)^{2+1} & (-1)^{2+2} & (-1)^{2+3} \\
(-1)^{3+1} & (-1)^{3+2} & (-1)^{3+3}
\end{array}\right)} \begin{gathered}
\text { we did } \\
i \text { is row } \\
\text { this } \\
j \text { is column }
\end{gathered} \quad \begin{array}{ccc}
1 \\
\text { column }
\end{array}
$$

