Math 2550-03

$$
2122 / 24
$$

Ex continued...
Last time we showed that the solutions to

$$
\begin{array}{r}
5 x_{1}-2 x_{2}+6 x_{3}=0 \tag{*}\\
-2 x_{1}+x_{2}+3 x_{3}=1
\end{array}
$$

are given by

$$
\begin{aligned}
& x_{1}=2-12 t \\
& x_{2}=5-27 t \\
& x_{3}=t
\end{aligned}
$$

where t can be any real number

So some example solutions to $(*)$ are illustrated in the following table, but there are infinitely many more, one for each t.

t	$x_{1}=$ $2-12 t$	$x_{2}=$ $5-27 t$	$x_{3}=$ t
0	2	5	0
1	-10	-22	1
$1 / 3$	-2	-4	$1 / 3$
π	$2-12 \pi$	$5-27 \pi$	π
0	0	\vdots	π \vdots 0
\vdots			

$$
\begin{aligned}
& \begin{array}{l}
x_{1}=2 \\
x_{2}=5 \\
x_{3}=0 \\
\text { is a sol. } \\
\text { to }(x)
\end{array} \\
& \begin{array}{l}
x_{1}=-10 \\
x_{2}=-22 \\
x_{3}=1 \\
\text { is another } \\
\text { solution }
\end{array} \\
& \hline
\end{aligned}
$$

又

Ex: Solve

$$
\begin{aligned}
a+3 b-2 c+2 e & =0 \\
2 a+6 b-5 c-2 d+4 e-3 f & =-1 \\
5 c+10 d+15 f & =5 \\
2 a+6 b+4 e+18 f & =6
\end{aligned}
$$

Put this into a matrix and reduce it... already a 1
make these O^{\prime} 's

$$
\frac{-2 R_{1}+R_{2} \rightarrow R_{2}}{-2 R_{1}+R_{4} \rightarrow R_{4}}
$$

$$
\begin{aligned}
& \begin{aligned}
\longrightarrow & \left(\begin{array}{rrrrrr|r}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & 2
\end{array}\right)
\end{aligned} \\
& \longrightarrow\left(\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 6 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \frac{1}{6} R_{3} \rightarrow R_{3} \\
& \longrightarrow \underbrace{\left(\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 / 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)}_{\text {in row echelon furn }}
\end{aligned}
$$

Back to the land of equations:
$(a+3 b-2 c+2 e=0$
(c) $+2 d$

$$
\begin{align*}
+3 f & =1 \tag{1}\\
f & =1 / 3 \tag{2}\\
0 & =0 \tag{3}
\end{align*}
$$

leading variables: a, c, f
free variables: b,d,e
Now solve for leading variables and give free variables a new name

$$
\begin{align*}
& a=-3 b+2 c-2 e \tag{1}\\
& c=1-2 d-3 f \tag{2}\\
& f=1 / 3 \tag{3}\\
& b=5 \tag{4}\\
& d=t \tag{5}\\
& e=u \tag{6}
\end{align*}
$$

Back substitute:
(6) $e=u$
(5) $d=t$
(4) $b=s$
(3) $f=1 / 3$
(2)

$$
\begin{aligned}
& f=1 / 3 \\
& c=1-2 d-3 f=1-2 t-3\left(\frac{1}{3}\right) \\
&=-2 t
\end{aligned}
$$

(1)

$$
\begin{aligned}
a & =-3 b+2 c-2 e \\
& =-3 s+2(-2 t)-2 u \\
& =-3 s-4 t-2 u
\end{aligned}
$$

Answer

$$
\begin{aligned}
& a=-3 s-4 t-2 u \\
& b=s \\
& c=-2 t \\
& d=t \\
& e=u \\
& f=1 / 3
\end{aligned}
$$

where s, t, u cun be any real numbers

There are an infinite \# of solutions. For examples one of them is:

$$
\begin{aligned}
& a=-3(1)-4(1)-2(1)=-9 \\
& b=1 \\
& c=-2(1)=-2 \\
& d=1 \\
& e=1 \\
& f=1 / 3
\end{aligned}
$$

when

$$
\begin{aligned}
& s=1 \\
& t=1 \\
& u=1
\end{aligned}
$$

Theorem: A system of linear equations either has
(i) no solutions,
(ii) exactly one solution, or (iii) infinitely many solutions.

Topic 4 - Inverse of a matrix

Motivation: Non-zero numbers have multiplicative inverses.
For example, $2 \cdot \frac{1}{2}=1$

2 and $\frac{1}{2}$ are multiplicative inverses

$$
2^{-1}=\frac{1}{2}
$$

Can we do this for matrices?
Recall: $I_{z}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Def: Let A be an $n \times n$ matrix. [So A is a square matrix] We say that A is invertible if there exists an $n \times n$ matrix B where

$$
A B=I_{n}=B A \quad \begin{aligned}
& A B=I_{n} \\
& \text { and } \\
& B A=I_{n}
\end{aligned}
$$

If $A B=I_{n}=B A$, then we say that A and B are inverses of each other.

Ex: Let $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)$.
Let's show that A and B are inverses of each other.
We have that

$$
\left.\begin{array}{rl}
A B & =\underbrace{\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)}_{2 \times 2} \underbrace{\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right)}_{2 \times 2} \\
& =\left(\begin{array}{ll}
\left(\begin{array}{ll}
1 & 1
\end{array}\right) \cdot\binom{-1}{2} & (1 \\
1
\end{array}\right) \cdot\binom{1}{-1} \\
\left(\begin{array}{ll}
2 & 1
\end{array}\right) \cdot\binom{-1}{2} & \left(\begin{array}{ll}
2 & 1
\end{array}\right) \cdot\binom{1}{-1}
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
(1)(-1)+(1)(2) & (1)(1)+(1)(-1) \\
(2)(-1)+(1)(2) & (2)(1)+(1)(-1)
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
\end{aligned}
$$

And

$$
\begin{aligned}
& B A=\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) \\
& \left.\left.=\left(\begin{array}{ll}
(-1 & 1
\end{array}\right) \cdot\binom{1}{2} \quad\left(\begin{array}{ll}
-1 & 1
\end{array}\right) \cdot\binom{1}{1}\right)\left(\begin{array}{ll}
1 \\
(2 & -1
\end{array}\right) \cdot\binom{1}{2} \quad\left(\begin{array}{ll}
2 & -1
\end{array}\right) \cdot\binom{1}{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
(-1)(1)+(1)(2) & (-1)(1)+(1)(1) \\
(2)(1)+(-1)(2) & (2)(1)+(-1)(1)
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
\end{aligned}
$$

Since $A B=I_{2}$ and $B A=I_{2}$, we know A and B are inverses of each other.

