Math 2550

$$
2 / 13 / 24
$$

Topic 3-Systems of linear equations

Def: A linear equation in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ is an equation of the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b \tag{t}
\end{equation*}
$$

Where $a_{1}, a_{2}, \ldots, a_{n}, b$ are constant real numbers
The solution space of $(*)$ consists of all $\left.\left(x_{1}, x_{2}, \ldots\right) x_{1}\right)$ that solve (*).

Ex:

$$
\begin{aligned}
& 3 x-2 y=4 \\
& a_{1} x_{1}+a_{2} x_{2}=6
\end{aligned}
$$

linear eqn.
$w / n=2$
variables/
unknowns

solution space is all (x, y) on this graph

Examples of linear equations:

$$
\begin{aligned}
& 10 x-2 y+\frac{1}{3} z=5 \\
& \sqrt{2} x_{1}-\pi x_{2}+x_{3}+2 x_{4}=0
\end{aligned}
$$

Not linear equations:

$$
\begin{aligned}
& 2 x^{2}+y=7 \\
& 5 \cos (x)+z=0
\end{aligned}
$$

Def: A system of m linear equations in the n unknowns $\underline{x_{1}, x_{2}, \ldots, x_{n}}$ is a list of m equations of the form:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

where the $a_{i j}$ are constants. The augmented matrix for (x) is

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

The solution space of (*) consists of all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that simultaneously solve all m equations in $(x)_{J}$ ie The common solutions to all m equations.

$E x:$
system

$$
\begin{aligned}
x+2 y & =3 \\
4 x+8 y & =6
\end{aligned}
$$

$m=2$ lin. equs

$$
n=2 \text { unknowns }
$$

$\frac{\text { aug minted matrix }}{\left(\begin{array}{ll|l}1 & 2 & 3 \\ 4 & 8 & 6\end{array}\right)}$

parallel lines solution space is empty.
No common solutions

Ex:
System

$$
\begin{gathered}
x+2 y=3 \\
4 x+8 y=12
\end{gathered}
$$

augmented matrix

$$
\left(\begin{array}{cc|c}
1 & 2 & 3 \\
4 & 8 & 12
\end{array}\right)
$$

the solution space is infinite. Its the entice line

$$
\text { Ex: } \begin{aligned}
x+y+2 z & =9 \\
2 x-3 z & =1 \\
-x+6 y-5 z & =0
\end{aligned}
$$

$$
m=3 \operatorname{lin} .
$$

$$
n=3
$$

$$
\underset{\text { matrix }}{\text { augmented }} \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 0 & -3 & 1 \\
-1 & 6 & -5 & 0
\end{array}\right)
$$

Ex:

$$
\begin{aligned}
x-y & =3 \\
y+z-17 w & =1 \\
2 x+y-z+w & =0
\end{aligned}
$$

$$
\underset{\text { augmented }}{\text { matrix }} \rightarrow\left(\begin{array}{cccc|c}
1 & -1 & 0 & 0 & 3 \\
0 & 1 & 1 & -17 & 1 \\
2 & 1 & -1 & 1 & 0
\end{array}\right)
$$

Def: Given a system of linear equations there are three operations that we call elementary row operations

They are:
(1) Multiply one of the rowslequations by a non-zeco constant
(2) Interchange two rows/equations
(3) Add a multiple of one row/equation to another row/equation

Ex: $\binom{$ Multiply a row/equation }{ by a non-zeco constant }
equation

$$
\begin{aligned}
& \begin{array}{r}
\text { equation } \\
\text { viewpoint }
\end{array} \\
& \begin{array}{r}
2 x-4 y+6 z=3 \\
x+z=1 \\
10 x-y-z=0
\end{array} \\
& \hline \frac{1}{2} R_{1} \rightarrow R_{1} \\
& \begin{array}{r}
x-2 y+3 z=\frac{3}{2} \\
x+z=1 \\
10 x-y-z=0
\end{array} \\
& \hline
\end{aligned}
$$

matrix

Viewpoint
$E x:\binom{$ Interchange two }{ (owsl equations }
equation
viewpoint

$$
\begin{aligned}
& \begin{array}{r}
\text { viewpoint } \\
\begin{array}{r}
2 x-4 y+6 z=3 \\
x+z=1 \\
10 x-y-z=0
\end{array} \\
R_{1} \leftrightarrow R_{2} \\
\hline
\end{array} \begin{array}{l}
x+z=1 \\
2 x-4 y+6 z=3 \\
10 x-y-z=0
\end{array}
\end{aligned}
$$

matrix
Viewpoint

$$
\xrightarrow[\left(\begin{array}{ccc|c}
2 & -4 & 6 & 3 \\
1 & 0 & 1 & 1 \\
10 & -1 & -1 & 0
\end{array}\right)]{\text { View point }} \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 & 1 \\
2 & -4 & 6 & 3 \\
10 & -1 & -1 & 0
\end{array}\right)
$$

Ex: $\binom{$ Add a multiple of one row/eqn }{ to another rowleqn } equation viewpoint

$$
\begin{array}{r}
\begin{array}{r}
x-y+z=1 \\
2 x+y-z=0 \\
y+z=4
\end{array} \left\lvert\, \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}} \begin{array}{r}
x-y+z=1 \\
3 y-3 z=-2 \\
y+z=4
\end{array}\right. \\
+\begin{array}{r}
-2 x+2 y-2 z=-2 \&-2 R_{1} \\
+(2 x+y-z=0)
\end{array} \leftarrow \begin{array}{l}
R_{2} \\
3 y-3 z=-2 \leftrightarrow\left[\begin{array}{l}
\text { new } \\
R_{2}
\end{array}\right.
\end{array}
\end{array}
$$

matrix viewpoint

$$
\left.\overline{\left(\begin{array}{lll}
0 & 3 & -3 \mid-2
\end{array}\right)} \leftarrow \right\rvert\, \begin{aligned}
& \text { new } \\
& R_{2}
\end{aligned}
$$

