Math 2550-03

$$
1 / 30 / 24
$$

Topic 1-Vectors
Def: Let $n \geqslant 1$ be an integer. $[$ So n can be $1,2,3,4,5, \ldots]$
An n-dimensional real vector is a list of n real numbers.
We use brackets \langle and \rangle for vectors.
We use an arrow over a variable that is a vector such as \vec{v}.

Ex: Some 2-dimensional vectors:

$$
\begin{aligned}
& \langle 5,-1\rangle \\
& \langle 4,7\rangle \\
& \langle 7,4\rangle \\
& \langle 2,2\rangle
\end{aligned}
$$

Ex: Some 3-dimensional vectors:

$$
\begin{aligned}
& \langle 1,-2, \pi\rangle \\
& \langle 6,7,10\rangle
\end{aligned}
$$

Ex: Some 6-dimensional vectors:

$$
\begin{aligned}
& \langle 1,2,3,4,5,6\rangle \\
& \langle 0,1,-1,2,3,4\rangle
\end{aligned}
$$

Def: Let $n \geqslant 1$ be an integer. $[$ So, n can be $1,2,3,4, \ldots]$ Define \mathbb{R}^{n} to be the set of all n-dimensional real vectors.
That is,

$$
\mathbb{R}^{n}=\underbrace{\left\{\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \mid a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}}_{\text {read the set of all }}
$$ $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ where $a_{1}, a_{2}, \ldots, a_{n}$ are real \#'s.

$$
\text { Ex: } \begin{aligned}
\mathbb{R}^{2} & =\left\{\left\langle a_{1}, a_{2}\right\rangle \mid a_{1}, a_{2} \in \mathbb{R}\right\} \\
& =\{\langle 1,2\rangle,\langle 0,0\rangle, \ldots\}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
\frac{E x:}{\mathbb{R}^{4}} & =\left\{\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle \mid a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}\right\} \\
& =\{\langle 2,5,5,0\rangle,\langle 1,0,0,0\rangle, \ldots 0\}
\end{aligned}
$$

$$
\begin{array}{cc}
\langle 2,5,5,0\rangle & \langle 1,0,0,0\rangle \\
\langle-1,5,3,2\rangle & 0 \\
0 & \langle 0,0,0,0\rangle
\end{array}
$$

Def: The length (or norm or magnitude) of a vector $\vec{V}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ in \mathbb{R}^{n} is

$$
\|\vec{v}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Some people write $|\vec{v}|$ instead of $\|\vec{v}\|$

Ex: In \mathbb{R}^{2}, let $\vec{v}=\langle 3,-2\rangle$.
Then,

$$
\|\vec{v}\|=\sqrt{3^{2}+(-2)^{2}}=\sqrt{13} \approx 3.6
$$

Formula comes from Pythagorean

Ex: $\operatorname{In} \mathbb{R}^{8}$, let

$$
\vec{v}=\langle-1,0,2,0,0,3,4,-2\rangle
$$

Then,

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\|\vec{v}\| & =\sqrt{(-1)^{2}+0^{2}+2^{2}+0^{2}+0^{2}+3^{2}+4^{2}+(-2)^{2}} \\
& =\sqrt{1+4+9+16+4} \\
& =\sqrt{34} \\
& \approx 5.8309 \ldots
\end{aligned}
\end{aligned}
$$

Operations un vectors:
Let \vec{v} and \vec{w} be vectors in \mathbb{R}^{n} and α be a $\underbrace{\text { scalar }}_{\text {number }}$ in \mathbb{R}.
Suppose

$$
\begin{aligned}
& \vec{v}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \\
& \vec{w}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle
\end{aligned}
$$

Define vector addition as

$$
\begin{aligned}
& \text { Define } \\
& \vec{v}+\vec{w}
\end{aligned}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right\rangle
$$

Some greek
w- omega

Define vector subtraction as

$$
\sigma-\text { sigma }
$$

$$
\vec{V}-\vec{w}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right\rangle
$$

Define vector scaling as

$$
\alpha \vec{v}=\left\langle\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right\rangle
$$

Ex: In \mathbb{R}^{2}, let $\vec{V}=\langle 2,-1\rangle$ and $\vec{w}=\langle-3,2\rangle$.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
\vec{v}+\vec{w} & =\langle 2,-1\rangle+\langle-3,2\rangle \\
& =\langle 2+(-3),-1+2\rangle \\
& =\langle-1,1\rangle \\
\vec{w}-\vec{v} & =\langle-3,2\rangle-\langle 2,-1\rangle \\
& =\langle-3-2,2-(-1)\rangle \\
& =\langle-5,3\rangle
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\underbrace{(-10)}_{\alpha} \vec{\omega} & =(-10)\langle-3,2\rangle \\
& =\langle(-10)(-3),(-10)(21\rangle \\
& =\langle 30,-20\rangle
\end{aligned}
$$

Ex: In \mathbb{R}^{5} we have:

$$
\begin{aligned}
& \langle 2,0,0,1,-3\rangle+\langle 2,5,5,0,0\rangle \\
& =\langle 2+2,0+5,0+5,1+0,-3+0\rangle \\
& =\langle 4,5,5,1,-3\rangle \\
& 5\langle 2,0,0,1,-3\rangle=\langle 10,0,0,5,-15\rangle
\end{aligned}
$$

Notation: In \mathbb{R}^{n}, the zecovector, notated by $\overrightarrow{0}$, is the vector with all zeros in it.
$\operatorname{In} \mathbb{R}^{2}, \vec{O}=\langle 0,0\rangle$.
$\operatorname{In} \mathbb{R}^{3}, \overrightarrow{0}=\langle 0,0,0\rangle$
In $\mathbb{R}^{4}, \overrightarrow{0}=\langle 0,0,0,0\rangle$
And so on...

Properties of vectors:
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{n} and let α, β be $\underbrace{\text { scalars }}_{\text {numbers }}$ in \mathbb{R}.
Then:
(1) $\vec{u}+\vec{v}=\vec{v}+\vec{u} \leftrightarrow\binom{$ commutative }{ property }
(2) $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w} \&\binom{$ associative }{ property }
(3) $\alpha(\beta \vec{u})=(\alpha \beta) \vec{u}+$
(4) $(\alpha+\beta) \vec{u}=\alpha \vec{u}+\beta \vec{u} \alpha$
(5) $\alpha(\vec{u}+\vec{v})=\alpha \vec{u}+\alpha \vec{v}$
(6)

$$
\begin{aligned}
& \vec{u}+\overrightarrow{0}=\vec{u} \\
& \overrightarrow{0}+\vec{u}=\vec{u}
\end{aligned}
$$

(7)

$$
\begin{aligned}
& \vec{u}+(-\vec{u})=\overrightarrow{0} \\
& (-\vec{u})+\vec{u}=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: } \begin{aligned}
& (5 \vec{u}) \\
= & 10 \vec{u} \\
E= & 5 \vec{u}=(3+2) \vec{u} \\
= & 3 \vec{u}+2 \vec{u}
\end{aligned}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& 5(\vec{u}+\vec{v}) \\
& =5 \dot{u}+5 \vec{v}
\end{aligned}
$$

proof of (3) when $n=2$:
Let \vec{u} be a vector in \mathbb{R}^{2} and let α, β be scalars in \mathbb{R}.
Then $\vec{u}=\left\langle a_{1}, a_{2}\right\rangle$ where a_{1}, a_{2} are real numbers.

$$
\text { hen, } \begin{aligned}
\alpha(\beta \vec{u}) & =\alpha\left(\beta\left\langle a_{1}, a_{2}\right\rangle\right) \\
& =\alpha\left\langle\beta a_{1}, \beta a_{2}\right\rangle \\
& =\left\langle\alpha \beta a_{1}, \alpha \beta a_{2}\right\rangle \\
& =\alpha \beta\left\langle a_{1}, a_{2}\right\rangle \\
& =\alpha \beta \vec{u}
\end{aligned}
$$

Then,

