$$
\begin{aligned}
& \text { Math 2550-01 } \\
& 4 / 9 / 24
\end{aligned}
$$

Test 2 is in two weeks. Tuesday 4123.
Review day is Thursday 4/18.

Special example:
The "trivial" vector space is

$$
V=\left\{\begin{array}{l}
\overrightarrow{0}
\end{array}\right\} \&\left\{\begin{array}{l}
\text { The vector space } \\
\text { with just one } \\
\text { vector }
\end{array}\right\}
$$

It turns out that $V$ has no basis.

We just define its dimension to be 0 .

Ex: Let $V=\mathbb{R}^{n}$ and $F=\mathbb{R}$. The standard basis for $\mathbb{R}^{n}$ is $\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{n}$ where $\vec{v}_{\bar{z}}$ has a 1 in spot $i$ and $O^{\prime}$ 's everywhere else. This gives $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

| $n$ | standard basis for $\mathbb{R}^{n}$ | $\operatorname{dim}\left(\mathbb{R}^{n}\right)$ |
| :---: | :--- | :---: |
| 2 | $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$ | 2 |
| 3 | $\vec{v}_{1}=\langle 1,0,0\rangle, \vec{v}_{2}=\langle 0,1,0\rangle$ | 3 |
|  | $\vec{v}_{3}=\langle 0,0,1\rangle$ |  |
| 4 | $\vec{v}_{1}=\langle 1,0,0,0\rangle$ |  |
|  | $\vec{v}_{2}=\langle 0,1,0,0\rangle$ | 4 |


|  | $\vec{V}_{3}=\langle 0,0,1,0\rangle$ |  |
| :---: | :---: | :---: |
| $\vec{V}_{4}=\langle 0,0,0,1\rangle$ |  |  |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |

Ex: Let $n$ be an integer with $n \geq 0$. Then

$$
\left.\begin{array}{l}
\text { with } n \geqslant 0 . \\
P_{n}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right.
\end{array} \begin{array}{ll}
a_{0}, \ldots, a_{n} \\
\text { are in } \mathbb{R}
\end{array}\right\}
$$

- set of polynomials of degree $\leq n$

The standard basis for $P_{n}$ is

$$
\left.\begin{array}{l}
\vec{v}_{0}=1 \\
\vec{v}_{1}=x \\
\vec{v}_{2}=x^{2} \\
\vdots \\
\vec{v}_{n}=x^{n}
\end{array}\right\} \begin{aligned}
& n+1 \\
& \text { vectors }
\end{aligned}
$$

So, $\operatorname{dim}\left(P_{n}\right)=n+1$

| $n$ | standard basis for $P_{n}$ | $\operatorname{dim}\left(P_{n}\right)$ |
| :---: | :---: | :---: |
| 0 | 1 | 1 |
| 1 | $1, x$ | 2 |


| 2 | $1, x, x^{2}$ | 3 |
| :---: | :---: | :---: |
| 3 | $1, x, x^{2}, x^{3}$ | 4 |
| $\vdots$ | $\vdots$ | $\vdots$ |

Ex:

$$
\frac{E x:}{5+x-x^{3}}=5 \cdot 1+1 \cdot x+0 \cdot x^{2}-10 x^{3}
$$

Ex: Let $V=M_{2,2} \leftarrow\left\{\begin{array}{l}\text { set of } \\ \text { all } 2 \times 2\end{array}\right.$ $F=\mathbb{R}$.

Note:

$$
\left(\frac{\text { Note: }}{\left(\begin{array}{ll}
1 & 2 \\
-1 & 5
\end{array}\right)}=1 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2 \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+(-1)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+5\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right.
$$

One can show $[\mathrm{HW} 7-\mathrm{Pa} \mathrm{ct} 1]$ that

$$
\begin{aligned}
& \text { that } \\
& \vec{v}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
& \vec{v}_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \vec{V}_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

is a basis for $M_{2,2}$.
Thus, $\operatorname{dim}\left(M_{2,2}\right)=4$

Theorem: Let $V$ be a finitedimensional vector space over a field $F$ with $\operatorname{dim}(v)=n$.
So, $V$ has a basis with $n$ vectors

Let $\vec{w}_{1}, \vec{\omega}_{2}, \ldots, \vec{w}_{m}$ be vectors from $V$.
(1) If $m<n$, then $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}$ do not span $V$.
(2) If $m>n$, then $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}$ are linearly dependent.

Ex: Let $V=\mathbb{R}^{3}, F=\mathbb{R}$.
Then, $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3 \leftarrow n=3$
Let

$$
\left.\begin{array}{l}
\vec{w}_{1}=\langle 1,5,0\rangle \\
\vec{w}_{2}=\langle 2,-1,0\rangle
\end{array}\right\}^{n=2}
$$

(1) from above says since we only only have 2 vectors $\vec{w}_{1}, \vec{w}_{2}$ in a 3 -dimensional space, then $\vec{w}_{1}, \vec{w}_{2}$ don't span all of $\mathbb{R}^{3}$. Ie you can't make all the vectors in $\mathbb{R}^{3}$ from just $\vec{w}_{1}$ and $\vec{w}_{2}$.

Ex: Let $V=P_{2}, F=\mathbb{R}$. We know that $\operatorname{dim}\left(P_{2}\right)=3$

Let

$$
\left.\begin{array}{l}
\vec{w}_{1}=1+x \\
\vec{w}_{2}=1-x^{2} \\
\vec{w}_{3}=x \\
\vec{w}_{4}=x^{2}
\end{array}\right\} \begin{aligned}
& m=4 \text { vectors } \\
& \text { in a } n=3 \\
& \text { dimensional } \\
& \text { space }
\end{aligned}
$$

(2) from above says since we have 4 vectors in a 3 -dimensional space $[4>3]$ then $\vec{\omega}_{1}, \vec{\omega}_{2}, \vec{\omega}_{3}, \vec{\omega}_{4}$ must be linearly dependent.

Here we have

$$
\begin{aligned}
& \begin{array}{l}
\text { Here we have } \\
\begin{array}{l}
1+x-1+x^{2}-x-x^{2}=\overrightarrow{0} \\
1 \cdot \vec{w}_{1}-1 \cdot \vec{w}_{2}-\vec{w}_{3}-w_{4}
\end{array}=\overrightarrow{0} \\
\vec{w}_{1}=\vec{w}_{2}+\vec{w}_{3}+\vec{w}_{4}
\end{array}
\end{aligned}
$$

Theorem: Let $V$ be a finite-dimensional vector space over a field $F$.
Let $n=\operatorname{dim}(V)$
So, $V$ has a basis with $n$ vectors in it
Suppose we pick $n$ vectors $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ from $V$.
(1) If $\vec{w}_{1}, \vec{w}_{2}$ )… $\vec{w}_{n}$ are linearly independent, then they will span $V$ and be a basis for $V$.
(2) If $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n} \operatorname{span} V$, then they will be linearly independent and be a basis for $V$.

Ex: $V=P_{2}, F=\mathbb{R}$
We know (since we showed that $1, x, x^{2}$ is a basis for $P_{2}$ ) that $\operatorname{dim}\left(P_{2}\right)=3$. Consider

$$
\left.\begin{array}{l}
\vec{w}_{1}=1 \\
\vec{w}_{2}=1+x \\
\vec{w}_{3}=1+x+x^{2}
\end{array}\right\} \quad 3 \text { vectors }
$$

Previously, we showed these vectors are linearly independent. Since we have 3 lin. ind. vectors in a 3-dimensional space, they form a basis for $P_{2}$.

