Math 2550-01 $4 / 18 / 24$

How 7 - pact 1
(2) (b) Is $\langle 3,1,5\rangle$ in the span of $\vec{u}=\langle 0,-2,2\rangle$ and $\vec{v}=\langle 1,3,-1\rangle$?
If $s 0$, write it as a lin. combo. of \vec{u} and \vec{v}.

We want to know if we can solve

$$
\langle 3,1, s\rangle=\frac{c_{1}\langle 0,-2,2\rangle+c_{2}\langle 1,3,-1\rangle}{c_{1} \vec{u}+c_{2} \vec{v}}
$$

we get

$$
\begin{aligned}
& \text { We get } \\
& \langle 3,1,5\rangle=\left\langle 0,-2 c_{1}, 2 c_{1}\right\rangle+\left\langle c_{2}, 3 c_{2},-c_{2}\right\rangle \\
& \langle 3,1,5\rangle=\left\langle c_{2},-2 c_{1}+3 c_{2}, 2 c_{1}-c_{2}\right\rangle \\
& \uparrow \uparrow \uparrow \uparrow
\end{aligned}
$$

This becomes

$$
\begin{array}{r}
c_{2}=3 \\
-2 c_{1}+3 c_{2}=1 \tag{1}\\
2 c_{1}-c_{2}=5
\end{array} \leftarrow c_{2}=3, c_{1}=4, c_{2}=3
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \langle 3,1,5\rangle=\underbrace{4\langle 0,-2,2\rangle+3\langle 1,3,-1\rangle}_{4 \vec{u}+3 \vec{v}} \\
& \langle 3,1,5\rangle=
\end{aligned}
$$

So, $\langle 3,1,5\rangle$ is in the span of \vec{u} and \vec{v} and

$$
\langle 3,1,5\rangle=4 \vec{u}+3 \vec{v}
$$

WW 7 -Part 1
(4) (c) Are the following vectors linearly independent or linearly dependent?

$$
\begin{aligned}
& \vec{v}_{1}=\langle-3,0,4\rangle \\
& \vec{v}_{2}=\langle 5,-1,2\rangle \\
& \vec{V}_{3}=\langle 1,1,3\rangle
\end{aligned}
$$

We need to find the solutions to the equation

$$
\begin{aligned}
& \text { to the equation } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
\end{aligned}
$$

If the only solution is $c_{1}=0, c_{2}=0, c_{3}=0$ then the vectors are linearly independent If there are more solutions, then the vectors are linearly dependent.

Heres our equation:

$$
\begin{aligned}
& \text { Heres our equation: } \\
& c_{1}\langle-3,0,4\rangle+c_{2}\langle 5,-1,2\rangle+c_{3}\langle 1,1,3\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

we get

$$
\begin{aligned}
& \text { We get } \\
&\left\langle-3 c_{1}, 0,4 c_{1}\right\rangle+\left\langle 5 c_{2},-c_{2}, 2 c_{2}\right\rangle+\left\langle c_{3}, c_{3}, 3 c_{3}\right\rangle \\
&=\langle 0,0,0\rangle
\end{aligned}
$$

which gives

$$
\left\langle-3 c_{1}+5 c_{2}+c_{3},-c_{2}+c_{3}, 4 c_{1}+2 c_{2}+3 c_{3}\right\rangle=\langle 0,0,0\rangle
$$

This gives

$$
\begin{aligned}
-3 c_{1}+5 c_{2}+c_{3} & =0 \\
-c_{2}+c_{3} & =0 \\
4 c_{1}+2 c_{2} & +3 c_{3}
\end{aligned}=0
$$

This
no gives:

$$
\begin{array}{r}
c_{1}+7 c_{2}+4 c_{3}=0 \\
c_{2}-c_{3}=0 \\
c_{3}=0
\end{array}
$$

free
variables

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
-3 & 5 & 1 & 0 \\
0 & -1 & 1 & 0 \\
4 & 2 & 3 & 0
\end{array}\right) \xrightarrow{R_{3}+R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 7 & 4 & 0 \\
0 & -1 & 1 & 0 \\
4 & 2 & 3 & 0
\end{array}\right) \\
& \xrightarrow{-4 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 7 & 4 & 0 \\
0 & -1 & 1 & 0 \\
0 & -26 & -13 & 0
\end{array}\right) \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 7 & 4 & 0 \\
0 & 1 & -1 & 0 \\
0 & -26 & -13 & 0
\end{array}\right) \\
& \xrightarrow{26 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 7 & 4 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -39 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{1}{39} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 7 & 4 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Solving:
(3) $C_{3}=0$
(2) $c_{2}=c_{3}=0$
(1) $c_{1}=-7 c_{2}-4 c_{3}=-7(0)-4(0)=0$

Thus the only sol, to

$$
\begin{aligned}
& \text { Thus the coly } \\
& c_{1} \vec{V}, ~+c_{2} \vec{V}_{2}+c_{3} \overrightarrow{V_{3}}=\overrightarrow{0} \\
& \text { is } c_{1}=0, c_{2}=0, c_{3}=0
\end{aligned}
$$

Thus, $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are linear
independent.

How 6 -Part 2
Let $V=\mathbb{R}^{3}, F=\mathbb{R}$.
Let

$$
\begin{aligned}
& \text { Let } \\
& W=\{\langle a, b, c\rangle \mid 4 a-b+2 c=0, a, b, c \in \mathbb{R}\}
\end{aligned}
$$

Show that W is a subspace of \mathbb{R}^{3}.
picture first

$$
V=\mathbb{R}^{3}
$$

$$
\langle 1,1,1\rangle
$$

$\langle 1,4,0\rangle$ is in W since $4(1)-4+2(0)=0$ $\langle 0,0,0\rangle$ is in W since $4(0)-0+2(0)=0$
$\langle 1,1,1\rangle$ is not in W since $4(1)-1+2(1) \neq 0$
proof that W is a subspace:
Let's write w this way

$$
\begin{aligned}
& \text { Let's write } W \text { this way } \\
& W=\{\langle a, b, c\rangle \quad b=4 a+2 c, a, b, c \in \mathbb{R}\}
\end{aligned}
$$

(1) (zero vector)

Let $a=0, b=0, c=0$
Then, $b=4 a+2 c$ is true.
Thus, $\vec{O}=\langle 0,0,0\rangle$ is in W.
(2) (closed under t)

Let $\vec{W}_{1}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$
and $\vec{w}_{2}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$
both be in W.
Then, $b_{1}=4 a_{1}+2 c_{1}$
$\vec{w}_{1} \vec{\omega}_{2}$
$. \dot{\vec{w}}_{1}+\vec{w}_{2}$
and $b_{2}=4 a_{2}+2 c_{2}$
Then,

$$
\begin{aligned}
& \text { hen, } \\
& \vec{W}_{1}+\vec{w}_{2}=\left\langle a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left(b_{1}+b_{2}\right) & \stackrel{\sqrt{v}}{=} 4 a_{1}+2 c_{1}+4 a_{2}+2 c_{2} \\
& =4\left(a_{1}+a_{2}\right)+2\left(c_{1}+c_{2}\right)
\end{aligned}
$$

So, $\vec{w}_{1}+\vec{W}_{2}$ is in W.
(3) (closed under scaling)

Let $\vec{\omega}=\langle a, b, c\rangle$ be in W and α be a scalar/number.
Then, $b=4 a+2 c$

We have

$$
\alpha \vec{w}=\langle\alpha a, \alpha b, \alpha c\rangle
$$

and

$$
\begin{aligned}
\alpha b & =\alpha(4 a+2 c) \\
& =4(\alpha a)+2(\alpha c) .
\end{aligned}
$$

So, $\alpha \vec{w}$ is in W.
By (1), (2), (3) W is a subspace.

HF 4
(3) (c) Find the inverse of $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$ if it exists.

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
1 & 0 & 1 & \overbrace{1} & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{-R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 & 0 & 1
\end{array}\right) \\
& \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -2 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{-\frac{1}{2} R_{3} \rightarrow R_{3}}\left(\begin{array}{lll|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right) \\
& \underbrace{-R_{3}+R_{1} \rightarrow R_{1}}_{-R_{3}+R_{2}+R_{2}}(\underbrace{1}_{A_{3}} \begin{array}{lll|lll}
1 & 0 & 0 & \left.\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right) & A_{A^{-1}}^{1}
\end{array}
\end{aligned}
$$

So,

$$
A^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

Ex: Solve

$$
\begin{aligned}
x+z & =1 \\
y+z & =-2 \\
x+y & =4
\end{aligned}
$$

by inverting the coefficent matrix
The above system can be written,

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)}_{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) \\
& \underbrace{\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2}
\end{array}\right.}_{A^{-1}}+\underbrace{\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)}_{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}-\frac{1}{2}
\end{array}\right)}_{A^{-1}}\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
&\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right)\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) \\
&\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\left(\frac{1}{2}\right)(1)+\left(-\frac{1}{2}\right)(-2)+\left(\frac{1}{2}\right)(4) \\
(-1 / 2)(1)+\left(\frac{1}{2}\right)(-2)+\left(\frac{1}{2}\right)(4) \\
\left(\frac{1}{2}\right)(1)+\left(\frac{1}{2}\right)(-2)+\left(-\frac{1}{2}\right)(4)
\end{array}\right) \\
&=\left(\begin{array}{c}
\frac{1}{2}+1+2 \\
-\frac{1}{2}-1+2 \\
\frac{1}{2}-1-2
\end{array}\right)=\left(\begin{array}{c}
3,5 \\
0.5 \\
-2.5
\end{array}\right) \\
& \text { So, } x=3,5, y=0.5, z=-2,5
\end{aligned}
$$

is the solution.

