Math 2550-01

$$
4 / 16 / 24
$$

T	R
$4 / 16$ Eigenvalues	$4 / 18$ Test 2 Review
$4 / 23$ Test 2	$4 / 25$ Eigenvalues
$4 / 30$ Topic 9 not on final	$5 / 2$ Topic 9 not on final
$5 / 7$ Review	$5 / 9$ Review

Topic 8-Eigenvalves \& Eigenvectors
Def: Let A be an $n \times n$ matrix. Suppose that \vec{x} is in \mathbb{R}^{n} and $\vec{x} \neq \overrightarrow{0}$. If $\overrightarrow{A x}=\lambda x$ for some Scalar λ, then we call λ an eigenvalue of A and \vec{x} an eigenvector of A corresponding to λ.
Given an eigenvalue λ of A, lambda the eigenspace corresponding to λ is

$$
E_{\lambda}(A)=\left\{\vec{x} \mid \vec{x} \in \mathbb{R}^{n} \text { and } A^{-1}=\lambda \vec{x}\right\}
$$

$\left[E_{\lambda}(A)\right.$ consists of all eigenvectors corresponding y to λ and also the zero vector $\overrightarrow{0}$

Ex: Let $A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$
Let $\vec{x}=\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)$.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
A \vec{x} & =\underbrace{3 \times 1}_{\underbrace{\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)}_{\text {answer }=3 \times 1}}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
(0)(-2)+(0)(1)+(-2)(1) \\
(1)(-2)+(2)(1)+(1)(1) \\
(1)(-2)+(0)(1)+(3)(1)
\end{array}\right) \\
& =\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)=1 \cdot \vec{x} \\
& +\quad \vec{A} \vec{x}=\lambda \vec{x}
\end{aligned}
\end{aligned}
$$

So, $A \vec{x}=1 \cdot \vec{x}]\left\{\begin{array}{l}A \vec{x}=\lambda \vec{x} \\ \lambda=1\end{array}\right.$

So, $\lambda=1$ is an eigenvalue of A and $\vec{x}=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$ is an eigenvector associated to $\lambda=1$.

How do we find the eigenvalues of an $n \times n$ matrix A ?
Suppose λ is an eigenvalue of A and $\vec{x} \neq \overrightarrow{0}$ and $A \vec{x}=\vec{x}$.
That is, \vec{x} is an eigenvector of A.
Then, $\vec{A} \vec{x}-\lambda \vec{x}=\overrightarrow{0}$.
So, $\left(A-\lambda I_{n}\right) \vec{x}=\overrightarrow{0}$ where
I_{n} is the $n \times n$ identity matrix.

$$
\left[\begin{array}{cc}
\text { Recall } & I_{n} \vec{X}=\vec{X}
\end{array}\right]
$$

Thus,

$$
\left(A-\lambda I_{n}\right) \stackrel{\rightharpoonup}{x}=\overrightarrow{0}
$$

The only this can happen is if $A-\lambda I_{n}$ has no inverse.

Why? Let $B=A-\lambda I_{n}$ If B^{-1} existed then if $B \vec{x}=\overrightarrow{0}$ then $\vec{B}^{-1} \vec{x}=B^{-1} \overrightarrow{0}$ and get $\vec{x}=\overrightarrow{0}$. But \vec{x} $i_{\text {sn' }}+\overrightarrow{0}$. Thus, B^{-1} does not exist.
Thus, $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ since $\left(A-\lambda I_{n}\right)^{-1}$ does net exist.

Summary:
The eigenvalues of A satisfy the equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$
called the
characteristic
polynomial of A.

Ex: Let $A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$
Let's find the eigenvalues of A. we need to solve

$$
\operatorname{det}\left(A-\lambda I_{(3)}\right)=0
$$

e because A is 3×3

We have

$$
\begin{aligned}
& \operatorname{det}\left(A-\lambda I_{3}\right)= \\
& =\operatorname{det}(\underbrace{\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)}_{A}-\lambda \underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)}_{I_{3}}) \\
& =\operatorname{det}\left(\left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)-\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 0 & -2 \\
1 & 2-\lambda & 1 \\
1 & 0 & 3-\lambda
\end{array}\right) \\
& \text { expand on } \\
& \text { column } 2 \\
& \left(\begin{array}{lll}
+ & - & + \\
- \\
+ & + \\
- & - \\
+
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-0+(2-\lambda)\left|\begin{array}{cc}
-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right|-\underbrace{0} \\
& \left.\left(\begin{array}{ccc}
-\lambda & 0 & -2 \\
1 & 2-\lambda & 1 \\
1 & 0 & 3-\lambda
\end{array}\right)\left(\begin{array}{ccc}
-\lambda & \phi & -2 \\
-1 & 2 & -\lambda
\end{array}\right]+\begin{array}{ccc}
-\lambda & 1 \\
1 & \phi & 3-\lambda
\end{array}\right)\left(\begin{array}{ccc}
\lambda & 2-\lambda & 1 \\
1 & 0 & 3-\lambda
\end{array}\right) \\
& =(2-\lambda)\left|\begin{array}{cc}
-\lambda & -z \\
1 & 3-\lambda
\end{array}\right| \\
& =(2-\lambda)[(-\lambda)(3-\lambda)-(1)(-2)] \\
& =(2-\lambda)\left[\lambda^{2}-3 \lambda+2\right] \leftarrow\left\{\begin{array}{l}
\text { let's } \\
\text { use this } \\
\text { below }
\end{array}\right. \\
& =2 \lambda^{2}-6 \lambda+4-\lambda^{3}+3 \lambda^{2}-2 \lambda \\
& =-\lambda^{3}+5 \lambda^{2}-8 \lambda+4 \leftrightarrow \begin{array}{c}
\text { characterisich } \\
\text { polynomial }
\end{array} \\
& \text { of } A
\end{aligned}
$$

We want to solve

$$
-\lambda^{3}+5 \lambda^{2}-8 \lambda+4=0
$$

From above we have that this factors like this:

$$
(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)=0
$$

Which becomes

$$
\begin{aligned}
& \text { nich becomes } \\
& (2-\lambda)(\lambda-2)(\lambda-1)=0
\end{aligned}
$$

or factor out (-1)

$$
-(\lambda-2)(\lambda-2)(\lambda-1)=0
$$

Which gives

$$
\begin{aligned}
& \text { hich gives } \\
& -(\lambda-2)^{2}(\lambda-1)=0
\end{aligned}
$$

The eigenvalues are the coots which are $\lambda=2,1$

Let's find eigenvectors for the eigenvalues $\lambda=2,1$.
Let's start with $\lambda=1$,
We will find a basis for the eigenspace $E_{1}(A)$, where

$$
E_{1}(A)=\{\vec{x} \left\lvert\, \underbrace{A \vec{x}=1 \cdot \vec{x}}_{\begin{array}{l}
A \vec{x}=\lambda \vec{x} \\
\lambda=1
\end{array}}\right.\}
$$

We have $\overrightarrow{A x}=1 \cdot \vec{x}$ becomes

$$
\begin{aligned}
& e \text { have } A x=1 \cdot x=1 \cdot \vec{x} \\
& \left(\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}=1 \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

This gives

$$
\left(\begin{array}{l}
\text { gives } \\
0 \cdot a+0 \cdot b-2 \cdot c \\
1 \cdot a+2 \cdot b+1 \cdot c \\
1 \cdot a+0 \cdot b+3 \cdot c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

This gives

$$
\left(\begin{array}{c}
-2 c \\
a+2 b+c \\
a+3 c
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

This gives

$$
\left(\begin{array}{c}
-a-2 c \\
a+b+c \\
a+2 c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This gives

$$
\begin{aligned}
-a & -2 c
\end{aligned}=0
$$

Solving we get:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
-1 & 0 & -2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right) \\
& \xrightarrow[-R_{1}+R_{3} \rightarrow R_{3}]{-R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{align*}
+2 c & =0 \tag{1}\\
b-c & =0 \tag{2}\\
0 & =0 \tag{3}
\end{align*}
$$

free: c

Solving:

$$
c=t
$$

(2) $b=c=t$
(1) $a=-2 c=-2 t$

Thus, $\vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is in $E_{1}(A)$
if $\quad \vec{x}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}-2 t \\ t \\ t\end{array}\right)=t\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$
So, $\left(\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right)$ is a basis for $E_{1}(A)$.
And, $\operatorname{din}\left(E_{1}(A)\right)=1$

