Math 2550-01 $4 / 11 / 24$

What's a basis good for?
To male a coordinate system.
Theorem: Let V be a vector space over a field F. Let $\vec{v}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be a basis for V. Then given any vector \vec{V} from V there exist unique scalars $c_{1}, c_{2}, \ldots, c_{n}$ from F where

$$
\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+\vec{c}_{n} \vec{v}_{n}
$$

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Previously we showed that

$$
\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle
$$

is a basis for \mathbb{R}^{2}.
We also showed that given $\vec{v}=\langle a, b\rangle$ we can write

$$
\underbrace{\langle a, b\rangle=\left(\frac{1}{3} a+\frac{1}{3} b\right)\langle 2,1\rangle+\left(-\frac{1}{3} a+\frac{2}{3} b\right)\langle-1,1\rangle}_{\vec{V}=c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}}
$$

For example,

$$
\underbrace{\langle 3,-6\rangle=(-1) \cdot\langle 2,1\rangle+(-5) \cdot\langle-1,1\rangle}_{\vec{v}=c_{1} \cdot \vec{v}_{1}+c_{2} \cdot \vec{v}_{2}}
$$

If instead your basis was

$$
\vec{w}_{1}=\langle 1,0\rangle, \vec{w}_{2}=\langle 0,1\rangle \leftarrow \begin{gathered}
\text { standard } \\
\text { basis }
\end{gathered}
$$

then

$$
\frac{\langle 3,-6\rangle=3 \cdot\langle 1,0\rangle+(-6) \cdot\langle 0,1\rangle}{\vec{V}=c_{1} \cdot \vec{w}_{1}+c_{2} \cdot \vec{w}_{2}}
$$

Def: Let V be a vector space over a field F. Let $\vec{V}_{1}, \vec{V}_{2}, \ldots \vec{V}_{n}$ be a basis for V.
If we fix this ordering on the bus is elements, then we call this an ordered basis for V.

We write

to denote an ordered basis. Given any vector \vec{V} from V we can write

$$
\vec{V}=c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+\cdots+c_{n} \vec{V}_{n}
$$

The constants $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of $\underset{\checkmark}{ }$ with respect to the basis β.

We write

$$
[\vec{V}]_{\beta}=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle
$$

coordinate vector for \vec{v} with respect to B.
can also write

$$
[\vec{v}]_{\beta}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let

$$
\begin{aligned}
& \left.\begin{array}{l}
\beta=[\langle 1,0\rangle,\langle 0,1\rangle] \\
\beta^{\prime}=[\langle 0,1\rangle,\langle 1,0\rangle]
\end{array}\right\} \begin{array}{l}
\text { two } \\
\text { orderings } \\
\text { of the } \\
\text { standard } \\
\text { basis }
\end{array} \\
& \left.\begin{array}{l}
\gamma=[\langle 2,1\rangle,\langle-1,1\rangle] \\
\gamma^{\prime}=[\langle-1,1\rangle,\langle 2,1\rangle]
\end{array}\right\} \begin{array}{l}
\text { two } \\
\text { orderings } \\
\text { of the } \\
\langle 2,1\rangle,\langle-1,\rangle
\end{array} \\
& \langle 2,1\rangle,\langle-1,1\rangle \\
& \text { basis }
\end{aligned}
$$

Let $\vec{v}=\langle 3,-6\rangle$.
Then

$$
\begin{aligned}
& \langle 3,-6\rangle=(3)\langle 1,0\rangle+(-6) \cdot\langle 0,1\rangle \\
& \text { So, }[\langle 3,-6\rangle]_{\beta}=\langle 3,-6\rangle
\end{aligned}
$$

And

$$
\begin{aligned}
& \text { And } \\
& \langle 3,-6\rangle=(-6) \cdot\langle 0,1\rangle+(3) \cdot\langle 1,0)
\end{aligned}
$$

So,

$$
[\langle 3,-6\rangle]_{\beta^{\prime}}=\langle-6,3\rangle
$$

Also,

$$
\begin{aligned}
& \text { Also, } \\
& \langle 3,-6\rangle=(-1) \cdot\langle 2,1\rangle+(-5) \cdot(-1,1\rangle
\end{aligned}
$$

So,

$$
\begin{aligned}
& {[\langle 0,} \\
& {[\langle 3,-6\rangle]_{\gamma}=}\langle-1,-5\rangle \\
& \gamma=[\langle 2,1\rangle,\langle-1,1\rangle]
\end{aligned}
$$

Also,

Then

$$
\begin{aligned}
{[\langle 3,-6\rangle]_{\gamma^{\prime}}=} & \langle-5,-1\rangle \\
& \gamma^{\prime}=[\langle-1,1\rangle,\langle 2,1\rangle]
\end{aligned}
$$

Q: What if you know that $[\vec{v}]_{\gamma}=\langle 1,-1\rangle$,
What is \vec{V} ?

$$
\gamma=[\langle 2,1\rangle,\langle-1,1\rangle]
$$

Then

$$
\begin{aligned}
\vec{V} & =(1)\langle 2,1\rangle+(-1) \cdot\langle-1,1\rangle \\
& =\langle 3,0\rangle
\end{aligned}
$$

Ex: Let $V=P_{2}, F=\mathbb{R}$.
Polys of degree ≤ 2
Let

$$
\begin{aligned}
& \beta=\left[1, x, x^{2}\right] \leftarrow \text { standard basis s } \\
& \gamma=\left[1,1+x, 1+x+x^{2}\right] \leftarrow\left[\begin{array}{l}
\text { another } \\
\text { basis } \\
\text { wu } \\
\text { found }
\end{array}\right.
\end{aligned}
$$

Let $\vec{v}=4+2 x+3 x^{2}$.
Find $[\vec{v}]_{\beta}$ and $[\vec{v}]_{\gamma}$
Note

$$
\vec{v}=4 \cdot 1+2 \cdot x+3 \cdot x^{2}
$$

So,

$$
\beta=\left[1, x, x^{2}\right]
$$

$$
[\vec{v}]_{\beta}=\langle 4,2,3\rangle
$$

To find $[\vec{v}]_{\gamma}$ we need to solve

$$
\underbrace{4+2 x+3 x^{2}}_{\vec{V}}=\underbrace{c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)}_{\gamma=\left[1,1+x, 1+x+x^{2}\right]}
$$

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& 4+2 x+3 x^{2}=c_{1}+c_{2}+c_{2} x+c_{3}+c_{3} x+c_{3} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { which gives } \\
& 4+2 x+3 x^{2}=\left(c_{1}+c_{2}+c_{3}\right)+\left(c_{2}+c_{3}\right) x+c_{3} x^{2}
\end{aligned}
$$

which gives

So,

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =4 \\
c_{2}+c_{3} & =2 \\
c_{3} & =3
\end{aligned}
$$

(2) $A>$

$$
\begin{aligned}
c_{3} & =3 \\
c_{2} & =2-c_{3} \\
& =2-3=-1 \\
c_{1} & =4-c_{2}-c_{3} \\
& =4+1-3 \\
& =2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& 4+2 x+3 x^{2}=2(1)+(-1)(1+x)+3\left(1+x+x^{2}\right) \\
& \text { So, } \\
& {\left[4+2 x+3 x^{2}\right]_{\gamma}=\langle 2,-1,3\rangle} \\
& \gamma=\left[1,1+x, 1+x+x^{2}\right]
\end{aligned}
$$

Let's do an example where we find a basis for a subspace ∇_{0}

WW 7 - Past 2

$$
\begin{aligned}
& \text { (1) (b) Let } V=\mathbb{R}^{3}, F=\mathbb{R} \\
& \begin{aligned}
& W=\{\langle a, b, c\rangle \mid b=a+c, a, b, c \in \mathbb{R}\} \\
& V=\mathbb{R}^{3}
\end{aligned}
\end{aligned}
$$

In $H W$ you show W is a subspace of $V=\mathbb{R}^{3}$. Let's
find a basis for W.
Let $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be in W.
Then, $b=a+c$.
So,

$$
\begin{aligned}
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
a \\
a+c \\
c
\end{array}\right) & =\left(\begin{array}{l}
a \\
a \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
c \\
c
\end{array}\right) \\
& =a\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Thus, the vectors $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
span all of W.
Are $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ linearly independent?
we need to solve

$$
c_{1}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

for c_{1}, c_{2}.
This becomes

$$
\left(\begin{array}{c}
c_{1} \\
c_{1} \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
c_{2} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This gives

$$
\begin{aligned}
& \text { gives } \\
& \left(\begin{array}{c}
c_{1} \\
c_{1}+c_{2} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \underset{\leftarrow}{\leftarrow} c_{1}=0 \\
& c_{2}=0
\end{aligned}
$$

So, $c_{1}=0, c_{2}=0$.
Thus, $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ are linearly independent.
Thus, a basis for W is $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.
Therefore, $\operatorname{dim}(w)=2$.
W is a 2 -dimensional space
inside a 3-dimensional space

$$
V=\mathbb{R}^{3}
$$

