Math 2550-01 $3 / 28 / 24$

We are going to define a basis which is a way to create a coordinate system in a vector space

Def: Let V be a vector space over a field F.
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be vectors in V. We call $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ a basis for V if two conditions hold:
(1) $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n} \operatorname{span} V$

This means every vector \vec{V} in V can be expressed in the form

$$
\xrightarrow[\vec{V}]{a n}=C_{1} \overrightarrow{V_{1}}+c_{2} \vec{V}_{2}+\ldots+c_{n} \vec{V}_{n}
$$

(2) $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ are linearly independent.
none of the \vec{V}_{i} can be expressed as linear combos of the other vectors, ie no redundencies

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$.
(1) we showed \vec{V}_{1}, \vec{V}_{2} span $\left.V=\mathbb{R}^{2}\right]$
(2) we showed \vec{v}_{1}, \vec{v}_{2} are lin. ind.

So, $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$ is a basis, for $V=\mathbb{R}^{2}$.
Any vector $\vec{v}=\langle a, b\rangle$ then

$$
\vec{v}=\langle a, b\rangle=a\langle 1,0\rangle+b\langle 0,1\rangle
$$

$$
=a \vec{v}_{1}+b \vec{v}_{2}
$$

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{V}_{1}=\langle 2,1\rangle, \vec{V}_{2}=\langle-1,1\rangle$.
(1) We showed previously that \vec{V}_{1}, \vec{V}_{2} span $V=\mathbb{R}^{2}$. In fact, we showed that any vector $\langle a, b\rangle$ can be written like this:

$$
\begin{aligned}
&\langle a, b\rangle \\
&\langle a, b\rangle=\left(\frac{1}{3} a+\frac{1}{3} b\right)\langle 2,1\rangle+\left(-\frac{1}{3} a+\frac{2}{3} b\right)\langle-1,1) \\
&=\left(\frac{1}{3} a+\frac{1}{3} b\right) \overrightarrow{V_{1}}+\left(-\frac{1}{3} a+\frac{2}{3} b\right) \vec{V}_{2}
\end{aligned}
$$

(2) We never showed these vectors ace linearly independent.

We need to solve

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}
$$

for c_{1}, c_{2}
This becomes

$$
\begin{aligned}
& \text { is becomes } \\
& c_{1}\langle 2,1\rangle+c_{2}\langle-1,1\rangle=\langle 0,0\rangle
\end{aligned}
$$

which is

$$
\begin{aligned}
& \text { Mich is } \\
& \left\langle 2 c_{1}-c_{2}, c_{1}+c_{2}\right\rangle=\langle 0,0\rangle \\
& \uparrow \uparrow
\end{aligned}
$$

This gives

$$
\begin{aligned}
2 c_{1}-c_{2} & =0 \\
c_{1}+c_{2} & =0
\end{aligned}
$$

Solving:

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
2 & -1 & 0 \\
1 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 0 \\
2 & -1 & 0
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 0 \\
0 & -3 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{lc|c}
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
c_{2} & =0
\end{aligned}
$$

(1) leading: c_{1}, c_{2}
(2) no free var.

So,
(2) $c_{2}=0$
(1) $c_{1}=-c_{2}=-(0)=0$.

So, the only solution to

$$
c_{1} \vec{v}_{1}+C_{2} \vec{v}_{2}=\overrightarrow{0}
$$

is $c_{1}=0, c_{2}=0$.
Thus, $\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$
are linearly independent.

Thus, from above $\vec{v}_{1}=\langle 2,1\rangle$, $\vec{v}_{2}=\langle-1,1\rangle$ are a basis for $V=\mathbb{R}^{2}$

Theorem: Let V be a vector space over a field F. Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be a basis with n vectors. Then any other basis for V will also have exactly n vectors in it.
All of the bases for V have the same \# of vectors

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
basis \#1: $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$
basis \# 2: $\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$
Here both bases have $n=2$ vectors All bases for $V=\mathbb{R}^{2}$ have 2 vectors in them.

Def: Let V be a vector space over a field F. If there exists a basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ with n vectors for V, then we call V a finite-dimensional vector space and we say that \checkmark has dimension n and write $\operatorname{dim}(V)=n$.

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Then, $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$ since $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$ is a basis for $V=\mathbb{R}^{2}$ and it
has 2 vectors in it

Ex: Let
$V=P_{2} \leftarrow$ all polynomials of degree ≤ 2
$F=\mathbb{R}$
Let $\vec{V}_{1}=1, \vec{V}_{2}=x, \vec{V}_{3}=x^{2}$.
Claim: $\vec{v}_{1}=1, \vec{v}_{2}=x, \vec{v}_{3}=x^{2}$ is a basis for $V=P_{2}$
proof:
(1) (spanning)

Given any vector $\vec{v}=a+b x+c x^{2}$ in P_{2} we have that

$$
\begin{aligned}
\vec{v} & =a \cdot 1+b \cdot x+c \cdot x^{2} \\
& =a \cdot \vec{v}_{1}+b \cdot \vec{v}_{2}+c \cdot \vec{v}_{3}
\end{aligned}
$$

Sou, $\vec{v}_{1}=1, \vec{v}_{2}=x, \vec{v}_{3}=x^{2}$ span $V=P_{2}$
(2) (linear independence)

Let's solve

$$
\begin{aligned}
& \text { t's solve } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
\end{aligned}
$$

for c_{1}, c_{2}, c_{3}.
This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& c_{1} \cdot 1+c_{2} \cdot x+c_{3} \cdot x^{2}=0+0 x+0 x^{2}
\end{aligned}
$$

\uparrow

This can only happen when

$$
c_{1}=0, c_{2}=0, c_{3}=0
$$

Thus, $\vec{v}_{1}=1, \vec{v}_{2}=x, \vec{v}_{3}=x^{2}$ are linearly independent.

Note:
Since $V=P_{2}$ has basis $\vec{v}_{1}=1, \vec{v}_{2}=x, \vec{v}_{3}=x^{2}$ we know $\operatorname{dim}\left(P_{2}\right)=3$.

