
We are going to define a basis which is a way to create a coordinate system In a vector space

Def: Let V be a vector space over a field F. Let V, Vz, ··· , Vn be vectors in V. We call V_1, V_2, \dots, V_n a basis for V if two conditions hold: (1) V_{1} V_{2} V_{1} V_{1} Span Vthis means every vector V in V Can be expressed in the form $V = C_1 V_1 + C_2 V_2 + \dots + C_n V_n$

(z) VijVzjuny Vn are linearly independent. none of the Vi can be expressed as linear combos of the other vectors, ie no redundencies

Ex: Let $V = R^2$, F = R, Let $\overrightarrow{V}_1 = \langle 1, 0 \rangle, \overrightarrow{V}_2 = \langle 0, 1 \rangle,$ () we showed \vec{V}_1, \vec{V}_2 span $V = \mathbb{R}^2$ 2 We showed V, Vz are lin, ind. Su, $V_{1} = \langle 1, 0 \rangle$, $\dot{V}_{2} = \langle 0, 1 \rangle$ is a basis for V=R². Any vector V=<a,b> then $\overline{v} = \langle a, b \rangle = a \langle 1, o \rangle + b \langle o, 1 \rangle$

 $= \alpha v_1 + b v_2$

Ex: Let V = R', F = RLet $\vec{v}_1 = \langle 2, i \rangle, \vec{v}_2 = \langle -1, i \rangle.$ (i) We showed previously that \vec{V}_{1}, \vec{V}_{2} span $V = \mathbb{R}^{2}$. In fact, We showed that any vector <a,b> can be written like this: $\langle q, b \rangle = (\frac{1}{3}a + \frac{1}{3}b) \langle z, i \rangle + (-\frac{1}{3}a + \frac{2}{3}b) \langle -i, i \rangle$ $= \left(\frac{1}{3}a + \frac{1}{3}b\right) \sqrt{1 + \left(-\frac{1}{3}a + \frac{2}{3}b\right)} \sqrt{2}$ (2) We never showed these vectors are linearly independent.

We need to solve

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 = \vec{0}$$

for c_1, c_2 .
This becomes
 $c_1 < 2, 17 + c_2 < -1, 17 = <0, 07$
which is
 $< 2c_1 - c_2, c_1 + c_2 > = <0, 07$

This gives

$$Zc_1 - C_2 = 0$$

$$C_1 + C_2 = 0$$

Solving:

$$\begin{pmatrix} 2 & -1 & | & 0 \\ 1 & 1 & | & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 1 & | & 0 \\ 2 & -1 & | & 0 \end{pmatrix}$$

$$-2R_1 + R_2 \rightarrow R_2 \qquad \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & -3 & | & 0 \end{pmatrix}$$

$$-\frac{1}{3}R_2 \rightarrow R_2 \qquad \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 1 & | & 0 \end{pmatrix}$$

leading: c,, c2 no free var.

So, $(z) C_2 = 0$ $(I) C_1 = -C_2 = -(0) = 0.$ So, the only solution to $C_1V_1 + C_2V_2 = 0$

is $c_1 = 0$, $c_2 = 0$. Thus, $V_1 = \langle z_1 | Z_1 \rangle$, $V_2 = \langle -1, | \rangle$ are linearly independent.

Thus, from above $\vec{v}_1 = \langle 2, 1 \rangle$, $V_2 = \langle -1, 1 \rangle$ are a basis for $V = \mathbb{R}^2$

Theorem: Let V be a vector
Space over a field F. Let

$$\vec{V}_1, \vec{V}_2, \cdots, \vec{V}_n$$
 be a basis with
n vectors. Then any other
basis for V will also have
exactly n vectors in it.
All of the bases for V have
the same # of vectors
 $\vec{Ex: V = IR^2, F = IR$
basis #1: $\vec{V}_1 = \langle 1, 0 \rangle, \vec{V}_2 = \langle 0, 1 \rangle$
basis #1: $\vec{V}_1 = \langle 2, 1 \rangle, \vec{V}_2 = \langle -1, 1 \rangle$
Here both bases have $N = 2$ vectors
All bases for $V = IR^2$ have Z
vectors in them.

Def: Let V be a vector space
over a field F. If there
exists a basis
$$V_1, V_2, ..., V_n$$

with n vectors for V, then
we call V a finite-dimensional
vector space and we say that
V has dimension n and
write dim(V) = n.

Ex: $V = R^2$, F = RThen, $dim(R^2) = 2$ since $\vec{v}_1 = \langle 1, 0 \rangle, \vec{v}_2 = \langle 0, 1 \rangle$ is a basis for $V = IR^2$ and it

has 2 vectors in it

Proof: () (spanning) Given any vector $\vec{v} = a + b \times t < x^2$ in P2 we have that

$$\vec{v} = \alpha \cdot |+ b \cdot x + c \cdot x^{2}$$

$$= \alpha \cdot \vec{v}_{1} + b \cdot \vec{v}_{2} + c \cdot \vec{v}_{3}$$
Su, $\vec{v}_{1} = 1$, $\vec{v}_{2} = x$, $\vec{v}_{3} = x^{2}$ span $V = P_{2}$.
(2) (linear independence)
Let's solve
 $c_{1}\vec{v}_{1} + c_{2}\vec{v}_{2} + c_{3}\vec{v}_{3} = \vec{0}$
for c_{1} , c_{1} , c_{3} .
This becomes
 $c_{1} \cdot |+ c_{2} \cdot x + c_{3} \cdot x^{2} = 0 + 0x + 0x^{2}$
This can only happen when
 $c_{1} = 0$, $c_{2} = 0$, $c_{3} = 0$.

