Math 2550-01

$$
3 / 26 / 24
$$

Def: Let V be a vector space over a field F.
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be vectors in V.
We say that $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ are linearly dependent if there exist scalars/numbers $c_{1}, c_{2}, \ldots, c_{n}$ from F, that are not all equal to zero (but some can be zero) where

$$
\begin{aligned}
& \text { (but some can } \\
& \vec{c}_{1} v_{1}+\vec{c}_{2} v_{2}+\cdots+\vec{c}_{n} v_{n}=\overrightarrow{0}
\end{aligned}
$$

If n_{0} such scalars exist then the vectors are called linearly independent.

Reformulated:

$$
\frac{e \text { formulated }}{c_{1} \vec{V}_{1}+c_{2} \vec{v}_{2}}+\cdots+c_{n} v_{n}=\overrightarrow{0}
$$

always has at least one
Solution, it is $c_{1}=0, c_{2}=0, \ldots, c_{n}=0$
If there are more solutions, then $\vec{V}_{1} \vec{V}_{2}, \ldots, \vec{V}_{n}$ are linearly dependent.
If that's the only solution, then $\vec{V}_{1} \vec{V}_{2}$, $\ldots \vec{V}_{n}$ are linearly independent.
$E x: V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{v}_{1}=\langle 3,-5\rangle, \vec{v}_{2}=\langle-6,10\rangle$
Some solutions to

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}
$$

are:

$$
\begin{aligned}
& \underbrace{0 \cdot\langle 3,-5\rangle+0 \cdot\langle-6,10\rangle=\langle 0,0\rangle}_{0 \overrightarrow{v_{1}}+0 \vec{v}_{2}=\overrightarrow{0}} \\
& 2 \cdot \vec{v}_{1}+1 \cdot \vec{v}_{2}=\overrightarrow{0} \\
& 2 \cdot\langle 3,-5\rangle+1 \cdot\langle-6,10\rangle=\langle 0,0\rangle
\end{aligned}
$$

Since $2 \cdot \vec{v}_{1}+1 \cdot \vec{v}_{2}=\overrightarrow{0}$ the vectors $\vec{v}_{1}=\langle 3,-5\rangle, \vec{v}_{2}=\langle-6,10\rangle$
are linearly dependent.
Note: From $2 \cdot \vec{v}_{1}+1 \cdot \vec{v}_{2}=\overrightarrow{0}$ or

$$
\begin{aligned}
& \text { Note: From } 2 \cdot \vec{v}_{1}+1 \cdot \vec{v}_{2}=\overrightarrow{0} \\
& \text { gives } \vec{v}_{1}=-\frac{1}{2} \vec{v}_{2} \leftrightarrow \vec{v}_{\overrightarrow{v_{1}}} \text { is a linear } \\
& \text { combo of } \vec{v}_{2} \\
& \text { or } \\
& \vec{v}_{2}=-2 \vec{v}_{1} \leftarrow \begin{array}{l}
\vec{v}_{2} \text { is a linear } \\
\text { Combo of } \vec{v}_{1}
\end{array}
\end{aligned}
$$

$E x: V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{v}_{1}=\langle 1,-1\rangle, \vec{v}_{2}=\langle 0,1\rangle, \vec{V}_{3}=\langle 2,-1\rangle$

$$
\begin{aligned}
& \text { Then, } \\
& \begin{array}{l}
2 \cdot \overrightarrow{v_{1}}+1 \cdot \vec{v}_{2}-1 \cdot \overrightarrow{v_{3}}=\overrightarrow{0} \\
c_{1} \vec{v}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0} \\
\begin{array}{l}
2 \cdot-1\rangle+1 \cdot\langle 0,1\rangle-1 \cdot\langle 2,-1\rangle=\langle 0,0\rangle
\end{array} \\
\hline c_{2}=-1
\end{array}
\end{aligned}
$$

where $c_{1}=2, c_{2}=1, c_{3}=-1$
are not all equal to zero.

So, $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are linearly dependent $\left.\begin{array}{l}\text { Note: } \vec{V}_{1}=-\frac{1}{2} \vec{v}_{2}+\frac{1}{2} \vec{V}_{3} \text { \& } \\ \overrightarrow{V_{2}}=-2 \vec{v}_{1}+1 \cdot \vec{v}_{3} \\ \vec{V}_{1}=2 \vec{v}_{1} \text { is a } \\ \text { linear of } \\ \text { combo of } \\ \vec{V}_{2} \& \vec{v}_{3}\end{array}\right\} \begin{aligned} & \text { other } \\ & \text { linear } \\ & \text { combos. }\end{aligned}$

Ex: $V=\mathbb{R}^{3}, F=\mathbb{R}$
Let $\vec{v}_{1}=\langle 1,1,1\rangle, \vec{v}_{2}=\langle 1,0,1\rangle$, $\vec{V}_{3}=\left\langle 1, \frac{4}{3}, 1\right\rangle$. Are these vectors lin. dep. or lin indef?
We want to find the solutions to

$$
\begin{aligned}
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
\end{aligned}
$$

which is

$$
c_{1}\langle 1,1,1\rangle+c_{2}\langle 1,0,1\rangle+c_{3}\left\langle 1, \frac{4}{3}, 1\right\rangle=\langle 0,0,0\rangle
$$

which becomes

$$
\begin{aligned}
& \text { which becomes } \\
& \left.\left\langle c_{1}, c_{1}, c_{1}\right\rangle+\left\langle c_{2}, 0, c_{2}\right\rangle+\left\langle c_{3}, \frac{4}{3} c_{3}, c_{3}\right\rangle=\langle 0,0,0\rangle\right)
\end{aligned}
$$

which becomes

$$
\begin{aligned}
& \text { which becomes } \\
& \left\langle c_{1}+c_{2}+c_{3}, c_{1}+\frac{4}{3} c_{3}, c_{1}+c_{2}+c_{3}\right\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

\uparrow
Lives

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}=0 \\
& c_{1}+\frac{4}{3} c_{3}=0 \\
& c_{1}+c_{2}+c_{3}=0
\end{aligned}
$$

Solving:

$$
\begin{aligned}
& \text { Solving: } \\
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
1 & 0 & 4 / 3 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \xrightarrow[-R_{1}+R_{3}+R_{3}]{-R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & -1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & -1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Continuing we get:

$$
\begin{align*}
\left(c_{1}+c_{2}+c_{3}\right. & =0 \\
\left(c_{2}-\frac{1}{3} c_{3}\right. & =0 \\
0 & =0 \\
3 & (1) \tag{1}\\
c_{1}=-c_{2}-c_{3} & (1) \tag{2}\\
c_{2}=\frac{1}{3} c_{3} & (3) \\
c_{3}=t &
\end{align*}
$$

Solving:
(3) $c_{3}=t$
(2) $c_{2}=\frac{1}{3} c_{3}=\frac{1}{3} t$
(1) $c_{1}=-c_{2}-c_{3}=-\frac{1}{3} t-t=-\frac{4}{3} t$

Plugging this back into

$$
c_{1} \vec{V}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{V}_{3}=\overrightarrow{0}
$$

gives

$$
\begin{aligned}
& \text { ives } \\
& \left(-\frac{4}{3} t\right) \vec{V}_{1}+\left(\frac{1}{3} t\right) \vec{V}_{2}+(t) \vec{V}_{3}=\overrightarrow{0} \\
&
\end{aligned}
$$

fur any real number t.
For example, when $t=3$ we get

$$
-4 \vec{v}_{1}+1 \cdot \vec{v}_{2}+3 \cdot \vec{v}_{3}=\overrightarrow{0}
$$

So, $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are linearly dependent.

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$.
Are these vectors lin. dep. or lin. in dep?
We need to solve

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}
$$

which is

$$
\begin{aligned}
& \text { mich is } \\
& c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle=\langle 0,0\rangle
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { becomes } \\
& \left\langle c_{1}, 0\right\rangle+\left\langle 0, c_{2}\right\rangle=\langle 0,0\rangle
\end{aligned}
$$

This becomes

$$
\left\langle c_{1}, c_{2}\right\rangle=\left\langle\begin{array}{c}
0,0\rangle \\
\uparrow
\end{array}\right.
$$

So, $c_{1}=0, c_{2}=0$.

Thus the only solution to only

$$
c_{1} \vec{v}+c_{2} \vec{v}_{2}=\overrightarrow{0}
$$

is $c_{1}=0, c_{2}=0$.
So, $\vec{v}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$ are
linearly independent.

Ex: $V=P_{2} \leftarrow$ polynomials up to degree 2

Let $\vec{v}_{1}=1, \vec{v}_{2}=1+X, \vec{v}_{3}=1+x+x^{2}$
Are these vectors linearly dependent or linearly independent?
we must solve

$$
\begin{aligned}
& \text { e must solve } \\
& c_{1} \vec{v} \\
& \vec{v}_{1}
\end{aligned} \vec{c}_{2}+\vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

Which is

$$
\begin{aligned}
& \text { Which is } \\
& c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)=\underbrace{0+0 x+0 x^{2}}_{\overrightarrow{0}}
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \text { which gives } \\
& c_{1}+c_{2}+c_{2} x+c_{3}+c_{3} x+c_{3} x^{2}=0+0 x+0 x^{2}
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \text { which gives } \\
& \left(c_{1}+c_{2}+c_{3}\right)+\left(c_{2}+c_{3}\right) x+c_{3} x^{2}=0+0 x+0 x^{2}
\end{aligned}
$$

This gives

This gives
(1) reduced with no free variables

Solving gives
(3) $c_{3}=0$
(2) $c_{2}=-c_{3}=-(0)=0$
(1) $c_{1}=-c_{2}-c_{3}=-0-0=0$

Thus, the only solution to

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \overrightarrow{v_{3}}=\overrightarrow{0}
$$

is $c_{1}=0, c_{2}=0, c_{3}=0$.
So, $\vec{v}_{1}=1, \vec{v}_{2}=1+x, \vec{v}_{3}=1+x+x^{2}$
are linearly independent.

Ex: $V=\mathbb{R}^{2}, F=\mathbb{R}$
Then, $\vec{v}_{1}=\langle 1,1\rangle, \vec{v}_{2}=\langle 6,7\rangle$

$$
\vec{v}_{3}=\langle-2,-2\rangle
$$

are linearly dependent because

$$
2 \cdot\langle 1,1\rangle+0 \cdot\langle 6,7\rangle+1 \cdot\langle-2,-2\rangle=\langle 0,0\rangle
$$

That is,

$$
\begin{aligned}
& 2 \cdot \overrightarrow{v_{1}}+{ }_{r}^{0 \cdot \vec{v}}+\overrightarrow{v_{2}}+\overrightarrow{v_{3}}=\overrightarrow{0} \\
& c_{1}=2, c_{2}=0, c_{3}=1 \\
& \text { all zero }
\end{aligned}
$$

not all zero

