Math 2550-01

$$
3 / 21 / 24
$$

Topic 7-Spanning, linear independence, basis

We are going to develop what a coordinate system is. It will be called a basis.

Def: Let V be a vector space over a field F. Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ be vectors from V
(1) A vector \vec{v} is said to be in the span of $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ if we can write

$$
\vec{V}=c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+\cdots+c_{n} v_{n}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are scalars from F.
(2) The span of $\vec{V}_{1}, \vec{V}_{2}, \cdots, \vec{v}_{n}$ is the set

$$
\begin{aligned}
& \operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}\right)= \\
= & \left\{\begin{array}{lll}
c_{1} & \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n} & \begin{array}{c}
c_{1}, c_{2}, \ldots, c_{n} \text { are } \\
\text { scalars from }
\end{array}
\end{array}\right\}
\end{aligned}
$$

(3) If $W=\operatorname{span}\left(\left\{\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}\right\}\right)$ then we say that \vec{V}_{1}, \vec{V}_{2},... \vec{V}_{n} span W.

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 1,0\rangle$.
Q: Is $\vec{w}=\langle-5,0\rangle$ in the span of \vec{v}_{1} ?
Can we write

$$
\underbrace{\langle-5,0\rangle}_{\vec{\omega}}=\underbrace{c_{1}\langle 1,0\rangle}_{\substack{c_{1} \vec{v}_{1}}}
$$

for some scalar c, T_{0}

$$
\text { Yes, } \underbrace{\langle-5,0\rangle=(-5)\langle 1,0\rangle}_{\vec{\omega}=-5 \vec{v}_{1}}
$$

So, \vec{w} is in the span of \vec{v}_{1}.

Q: Is $\vec{z}=\langle 1,-1\rangle$ in the Span of $\vec{V}_{1} ?$
We would need to solve

$$
\underbrace{\langle 1,-1\rangle=c_{1}\langle 1,0\rangle}_{\vec{z}=c_{1} \vec{v}_{1}}
$$

This would become $\langle 1,-1\rangle=\left\langle c_{1}, 0\right\rangle$
So, no, \vec{z} is not in the spun of \vec{v}_{1}.
Q: What is the span of \vec{v}_{1} ?

$$
\begin{aligned}
& \text { Q: What is the span } \begin{aligned}
\left.\left.\operatorname{sp} \vec{v}_{1}\right\}\right) & =\left\{c_{1} \vec{V}_{1} \mid c_{1} \in \mathbb{R}\right\} \\
& =\left\{c_{1}\langle 1,0\rangle \mid c_{1} \in \mathbb{R}\right\}
\end{aligned}
\end{aligned}
$$

$$
=\left\{\left\langle c_{1}, 0\right\rangle \mid c_{1} \in \mathbb{R}\right\}
$$

The span of \vec{v}_{1} consists of all vectors of the form $\left\langle c_{1}, 0\right\rangle$ where c_{1} is a scalar in \mathbb{R}.

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$
Let $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$.
Q: Is $\vec{\omega}=\langle 10,-3\rangle$ in the span of \vec{v}_{1}, \vec{v}_{2} ? Can we write

$$
\begin{aligned}
& \underbrace{\langle\mid 0,-3\rangle=c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle}_{\vec{\omega}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}}
\end{aligned}
$$

This would become

$$
\begin{aligned}
& \text { is would become } \\
& \langle\mid 0,-3\rangle=\left\langle c_{1}, 0\right\rangle+\left\langle 0, c_{2}\right\rangle
\end{aligned}
$$

which gives

$$
\left\langle(0,-3\rangle=\left\langle c_{1}, c_{2}\right\rangle\right.
$$

So, $c_{1}=10, c_{2}=-3$.
That is, $\quad \vec{\omega}=10 \vec{v}_{1}-3 \vec{v}_{2}$
So, $\vec{\omega}$ is in the spun of \vec{v}_{1}, \vec{v}_{2}

Q: What is the span of \vec{v}_{1}, \vec{v}_{2} ?

$$
\begin{aligned}
\operatorname{span} & \left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)=\left\{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left\langle c_{1}, 0\right\rangle+\left\langle 0, c_{2}\right\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left\langle c_{1}, c_{2}\right\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\mathbb{R}^{2}
\end{aligned}
$$

Another way:
Given any vector $\langle a, b\rangle$ from \mathbb{R}^{2} we get

$$
\langle a, b\rangle=\underbrace{a\langle 1,0\rangle+b\langle 0,1\rangle}_{a \vec{v}_{1}+b \vec{v}_{2}}
$$

So any vector in \mathbb{R}^{2} is in the span of \vec{v}_{1}, \vec{v}_{2}.
For example,

$$
\begin{aligned}
& \text { For example, } \overrightarrow{-1}_{2}, 5 \vec{v}_{1}+5 \vec{v}_{2} \\
& \text {. }
\end{aligned}
$$

Summary: $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$
spun all of $V=\mathbb{R}^{2}$.

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 2,1\rangle, \vec{V}_{2}=\langle-1,1\rangle$.
An example of a vector in the span of \vec{v}_{1}, \vec{v}_{2} is

$$
1 \cdot \vec{V}_{1}+2 \cdot \vec{V}_{2}=1 \cdot\langle 2,1\rangle+2 \cdot\langle-1,1\rangle
$$

$$
\begin{aligned}
& =\langle 2,1\rangle+\langle-2,2\rangle \\
& =\langle 0,3\rangle
\end{aligned}
$$

So, $\langle 0,3\rangle$ is in the span of \vec{v}_{1}, \vec{v}_{2}.

<lain: $\vec{V}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$ span all of $V=\mathbb{R}^{2}$.
proof: Let $\langle a, b\rangle$ be any vector in \mathbb{R}^{2}. We must show that can write

$$
\begin{aligned}
& \text { must show that } \\
& \langle a, b\rangle=\underbrace{c_{1}\langle 2,1\rangle+c_{2}\langle-1,1\rangle}_{c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}}
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { his becomes } \\
& \langle a, b\rangle=\left\langle 2 c_{1}, c_{1}\right\rangle+\left\langle-c_{2}, c_{2}\right\rangle
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \text { mich gives } \\
& \langle a, b\rangle=\left\langle 2 c_{1}-c_{2}, c_{1}+c_{2}\right\rangle \\
& \uparrow \uparrow
\end{aligned}
$$

This gives

$$
\begin{aligned}
2 c_{1}-c_{2} & =a \\
c_{1}+c_{2} & =b
\end{aligned}
$$

Let's solve:

$$
\begin{aligned}
& \text { Let's solve: } \\
& \left(\begin{array}{cc|c}
2 & -1 & a \\
1 & 1 & b
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & b \\
2 & -1 & a
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & b \\
0 & -3 & a-2 b
\end{array}\right) \\
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|c}
1 & 1 & b \\
0 & 1 & -\frac{1}{3} a+\frac{2}{3} b
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{align*}
c_{1}+c_{2} & =b \tag{1}\\
c_{2} & =-\frac{1}{3} a+\frac{2}{3} b \tag{2}
\end{align*}
$$

(2)
(1)

$$
\begin{aligned}
c_{2} & =-\frac{1}{3} a+\frac{2}{3} b \\
c_{1}=b-c_{2} & =b-\left(-\frac{1}{3} a+\frac{2}{3} b\right) \\
& =\frac{1}{3} a+\frac{1}{3} b
\end{aligned}
$$

Plugging this back into

$$
\langle a, b\rangle=c_{1}\langle 2,1\rangle+c_{2}\langle-1,1\rangle
$$ gives

$$
\begin{aligned}
& \text { gives } \\
& \langle a, b\rangle=\frac{\left(\frac{1}{3} a+\frac{1}{3} b\right)\langle 2,1\rangle+\left(-\frac{1}{3} a+\frac{2}{3} b\right)\langle-1,1\rangle}{\left(\frac{1}{3} a+\frac{1}{3} b\right) \overrightarrow{v_{1}}+\left(-\frac{1}{3} a+\frac{2}{3} b\right) \vec{V}_{2}}
\end{aligned}
$$

So, every vector $\langle a, b\rangle$ is in the span of $\vec{v}_{1}=\langle 2,1\rangle, v_{2}=\langle-1,1\rangle$
claim

Ex: $\langle a, b\rangle=\langle 3,-6\rangle$

$$
\begin{aligned}
\langle 3,-6\rangle & =\left(\frac{1}{3} \cdot 3+\frac{1}{3}(-6)\right)\langle 2,1\rangle \\
& +\left(-\frac{1}{3} \cdot 3+\frac{2}{3}(-6)\right)\langle-1,1\rangle
\end{aligned}
$$

Ie

$$
\begin{aligned}
& \operatorname{Ie} \\
& \langle 3,-6\rangle=(-1)\langle 2,1\rangle+(-5)\langle-1,1\rangle
\end{aligned}
$$

Theorem: Let V be a vector space over a field F. Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be vectors from V. Then $\operatorname{span}\left(\left\{\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}\right\}\right)$ is a subspace of V.
picture when $n=3$

