Math 2550-01

$$
3 / 19 / 24
$$

Ex: Let $F=\mathbb{R} \sigma$ scalars and
vectors

$$
\begin{aligned}
& \text { and } \\
& V=P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\} \\
& \begin{array}{c}
\uparrow^{\text {veto degree }} \begin{array}{l}
\text { p polynomials } \\
\end{array} \\
=\left\{1-2 x+x^{2}, \frac{x^{2}}{5}, x^{2}, 1-x+\pi x^{2}, \ldots\right\}
\end{array}
\end{aligned}
$$

$$
5+0 x+0 x^{2}
$$

ex of adding two "vectors":

$$
\begin{gathered}
\frac{e x \text { of adding to }}{\left(1-2 x+x^{2}\right)+\left(5+10 x-2 x^{2}\right)} \\
=6+8 x-x^{2}
\end{gathered}
$$

ex of scaling a vector:

$$
5 \cdot\left(1-2 x+x^{2}\right)=5-10 x+5 x^{2}
$$

$V=P_{2}$ is a vector space over $F=\mathbb{R}$


Now we define a subspace Which is a vector space inside a vector space.

Def: Let $V$ be a vector spare over a field $F$.
Let $W$ be a subset of $V$. We say that $W$ is a subspace of $V$ if

(1) $\vec{O}$ is in $W$
(2) if $\vec{W}_{1}, \vec{W}_{2}$ are in $W_{1}$ then $\vec{w}_{1}+\vec{w}_{2}$ is in $w$
(3) if $\vec{W}_{3}$ is in $W$ and $\alpha$ is in $F$, then $\} \begin{gathered}\text { w is } \\ \text { chased } \\ \text { scaling }\end{gathered}$ $\alpha \vec{w}_{3}$ is in $W$.

Ex: Let $F=\mathbb{R}\}$ This is a and $V=\mathbb{R}^{2}$.

$$
\text { et } \begin{aligned}
W & =\{\langle x, 0\rangle \mid x \in \mathbb{R}\} \\
& =\left\{\langle 1,0\rangle,\left\langle\frac{2}{3}, 0\right\rangle,\langle-\pi, 0\rangle\right. \\
& \quad\langle 0,0\rangle,\langle 2,0\rangle, \ldots\}
\end{aligned}
$$

$$
V=\mathbb{R}^{2}
$$

W


Proof that $W$ is a subspace:
(1) $\vec{O}=\langle 0,0\rangle$ is in $W A \sqrt{\text { set }} x=$
(2) Let $\vec{\omega}_{1}$ and $\vec{\omega}_{2}$ be in W.

Then, $\vec{w}_{1}=\left\langle x_{1}, 0\right\rangle$ and $\vec{\omega}_{2}=\left\langle x_{2}, 0\right\rangle$
where $x_{1}, x_{2}$ are real numbers.

Then, $\vec{w}_{1}+\vec{w}_{2}=\left\langle x_{1}+x_{2}, 0\right\rangle$
is of the form $\langle x, 0\rangle$ and so $\vec{w}_{1}+\vec{w}_{2}$ is in $W$.
(3) Let $\vec{w}_{3}$ be in $W$ and $\alpha$ be a scalar in $F=\mathbb{R}$.
Then, $\vec{w}_{3}=\left\langle x_{3}, 0\right\rangle$
where $x_{3} \in \mathbb{R}$.
And,

$$
\begin{aligned}
\alpha \vec{w}_{3} & =\alpha\left\langle x_{3}, 0\right\rangle \\
& =\left\langle\alpha x_{3}, \alpha 0\right\rangle \\
& =\left\langle\alpha x_{3}, 0\right\rangle
\end{aligned}
$$

We see that $\alpha \vec{w}_{3}$ is of the form $\langle x, 0\rangle$ and thus $\alpha \vec{w}_{3}$ is in $W$.

By (1), (2), (3), $W$ is a subspace of $V$.

Ex: Let $F=\mathbb{R}$ and $V=\mathbb{R}^{2}$.

$$
\begin{aligned}
\text { Let } \\
\begin{aligned}
W & =\{\langle x, 1\rangle \mid x \in \mathbb{R}\} \\
& =\left\{\langle 0,1\rangle,\langle 1,1\rangle,\left\langle-\frac{1}{2}, 1\right\rangle, \ldots\right\}
\end{aligned}
\end{aligned}
$$

$W$ is not a subspace.
To show this you just need to give an example of
(1), (2), os (3) failing.

For example, (1) isn't true since $\vec{O}=\langle 0,0\rangle$ is not in $W$ because it is not of the form $\langle x, 1\rangle$.
You could instead say:
$W$ isnlt a subspace because (2) fails. For example, $\langle 2,1\rangle$ and $\langle 4,1\rangle$ are in $W$, but $\langle 2,1\rangle+\langle 4,1\rangle=\langle 6,2\rangle$ is not in $W$.

Ex: Let $F=\mathbb{R}$ and

$$
V=M_{2,2}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

$\pi$ set of all $2 \times 2$ matrices

$$
\begin{align*}
& \text { Let } \\
& W=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \left\lvert\, \begin{array}{l}
d=a+b \\
a, b, c, d \in \mathbb{R}
\end{array}\right.\right\}  \tag{0}\\
& =\underbrace{\left\{\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right)}_{\begin{array}{c}
i \operatorname{in} w \\
\text { since } \\
z=1+1
\end{array}}, \underbrace{\left(\begin{array}{ll}
1 & 2 \\
1
\end{array}\right)}_{\begin{array}{c}
\text { is in } \operatorname{since} \\
3=1+2 \\
1
\end{array}}, \underbrace{\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)}_{\substack{\text { is in } w \\
\text { since } \\
0=0}}, \ldots\}\}
\end{align*}
$$

side calculations

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right)}_{\text {in } \omega}+\underbrace{\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)}_{\text {in } \omega}=\underbrace{\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right)}_{\text {in } \omega} \\
& 5 \cdot \underbrace{\left(\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right)}_{\text {inge } 2+3=5}=\underbrace{\left(\begin{array}{cc}
5 & 5 \\
15 & 10
\end{array}\right)}_{\text {in } \omega}
\end{aligned}
$$

It looks like its gonna be a subspace. Let's try to prove it.

Proof that $W$ is a subspace
(1) Set $a=0, b=0, c=0, d=0$ to get $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and notice that $d=a+b$.
So, $\vec{D}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is in $W$.
(2) Let $\vec{w}_{1}$ and $\vec{w}_{2}$ be in $w$.

Then, $\vec{w}_{1}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ where $d_{1}=a_{1}+b_{1}$
and $\vec{w}_{2}=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ where $d_{2}=a_{2}+b_{2}$
Then,

$$
\begin{array}{ll}
\text { Then, } \\
\overrightarrow{w_{1}} & +\vec{w}_{2}
\end{array}=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right) \text { and }
$$

$$
\left.\begin{array}{rl}
d_{1}+d_{2} & =\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right) \\
d_{1} & =a_{1}+b_{1} \\
d_{2}=a_{2}+b_{2}
\end{array}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) .
$$

So, $\vec{w}_{1}+\vec{w}_{2}$ is in $W$ still.
(3) Let $\vec{w}_{3}$ be in $W$ and $\alpha$ be a scalar.
Then, $\vec{w}_{3}=\left(\begin{array}{ll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right) \begin{gathered}\text { where } \\ d_{3}=\end{gathered}$ $d_{3}=a_{3}+b_{3}$.
we get

$$
\text { Ne get } \underset{\vec{w}_{3}}{ }=\left(\begin{array}{ll}
\alpha a_{3} & \alpha b_{3} \\
\alpha c_{3} & \alpha d_{3}
\end{array}\right)
$$

and $\quad \alpha d_{3}=\alpha\left(a_{3}+b_{3}\right)=\alpha a_{3}+\alpha b_{3}$ $d_{3}=a_{3}+b_{3}$

Thus, $\alpha \vec{W}_{3}$ is in $W$. By (1), (2), (3), $W$ is a subspace.

