$$
\begin{aligned}
& \text { Math 2550-01 } \\
& 3 / 14 / 24
\end{aligned}
$$

Topic 6-Vector Spaces

We are going to generalize what a number/scalar is and what a vector is.

Def: A field consists of a set F of "scalars/numbers" and two operations + and. such that if x and y are in F then $x+y$ and $x \cdot y$ are in F.

$$
x \quad y \quad x+y \quad x \cdot y
$$

Also the following properties must hold:
(F1) If a, b, c are in F, then

$$
\begin{array}{ll}
\text { F1) If } a, b, c & \text { are } \\
\begin{array}{ll}
a+b=b+a & a \cdot(b+c)=a \cdot b+a \cdot c \\
a \cdot b=b \cdot a & (b+c) \cdot a=b \cdot a+c \cdot a \\
a+(b+c)=(a+b)+c & \\
a \cdot(b \cdot c)=(a \cdot b) \cdot c &
\end{array}
\end{array}
$$

(F2) There exist unique elements 0 and 1 in F where

$$
\begin{aligned}
& x+0=x+0=x \\
& x \cdot 1=1 \cdot x=x
\end{aligned}
$$

for all x in F.
(F3) Let x be in F.
There exists a unique element $-x$ in F where $x+(-x)=0=(-x)+x$ If $x \neq 0$, then there exists a unique element x^{-1} in F where

$$
x \cdot x^{-1}=1=x^{-1} \cdot x
$$

END OF
$E x: F=\mathbb{R} \leftarrow$ the set of real numbers
\mathbb{R} is a field

\mathbb{R} is the only example we will use in this class, but 士 will state definitions and theorems for general fields. Just think \mathbb{R} when you see the word "field". $\quad i^{2}=-1, i=\sqrt{-1}$

Ex: There are also finite fields. These come from prime numbers modular arithmetic.

Our next definition will generalize what a vector is.

Def: A vector space V over a field F consists of a set of "vectors" V and a field F with two operations, "vector addition" + and "vector scaling"

- such that if $\vec{v}, \vec{\omega}, \vec{z}$ are vectors in V and α, β are scalars from F, then the following must hold:
(1) $\vec{V}+\vec{w}$ is in V

7 adding vectors
(2) $\alpha \cdot \vec{V}$ is in V scaling a vector is still a vector
(3) $\vec{v}+\vec{w}=\vec{w}+\vec{v}$
(4) $\vec{v}+(\vec{w}+\vec{z})=(\vec{v}+\vec{w})+\vec{z}$
(5) there exists a unique vector \vec{O} in V, called the zero vector, where $\overrightarrow{0}+\vec{y}=\vec{y}+\overrightarrow{0}=\vec{y}$ for all \vec{y} in V.
(6) there exists a vector $-\vec{v}$ in V where $\vec{v}+(-\vec{v})=(-\vec{v})+\vec{v}=\overrightarrow{0}$
(7) $1 \cdot \vec{v}=\vec{v} \leftarrow$ scaling by 1
(8) $(\alpha \beta) \cdot \vec{v}=\alpha \cdot(\beta \cdot \vec{v})$
(9) $\alpha \cdot(\vec{v}+\vec{\omega})=\alpha \cdot \vec{v}+\alpha \cdot \vec{\omega}$
(10) $(\alpha+\beta) \cdot \vec{V}=\alpha \cdot \vec{V}+\beta \vec{V}$

END OF DEF

Ex: Let $V=\mathbb{R}^{n}$ and $F=\mathbb{R}$ Using the usual vector adding and scaling makes this a vector space.
For example, when $n=2$ we have:

adding vectors:

$$
\begin{aligned}
& \text { adding vectors: } \\
& \langle 1,2\rangle+\langle-3,5\rangle=\langle-2,7\rangle
\end{aligned}
$$

scaling a vector:

$$
\begin{aligned}
& \text { ailing a vector! } \\
& 5 \cdot\langle 2,1\rangle=\langle 10,5\rangle
\end{aligned}
$$

Ex: Let
$V=M_{2,2}$ be the set of all 2×2 matrices with real number entries and $F=\mathbb{R}$.
In set notation:

$$
\begin{aligned}
& \text { In set notation: } \\
& \left.\begin{array}{rl}
V=M_{2,2} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \\
& =\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
\pi & 2
\end{array}\right),\left(\begin{array}{cc}
1 / 2 & 2 \\
3 & 5
\end{array}\right), \ldots\right\} \\
\sim
\end{array}\right\} \begin{array}{c}
\text { zecovector } \\
0
\end{array}
\end{aligned}
$$

Adding and scaling is like normal, ie like this:

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right) \\
& \alpha\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\alpha a & \alpha b \\
\alpha c & \alpha d
\end{array}\right)
\end{aligned}
$$

Ex: Pick some integer $n \geqslant 0$.
(So n can be $0,1,2,3,4,5, \ldots$.
Let $V=P_{n}$ be the set of all polynomials of degree $\leq n$.

So,

$$
V=P_{n}
$$

$$
\left.\begin{array}{l}
=P_{n} \\
=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \left\lvert\, \begin{array}{c}
a_{0}, a_{1}, \ldots . a_{n} \\
\text { are real } \\
\text { numbers }
\end{array}\right.\right.
\end{array}\right\}
$$

Let $F=\mathbb{R} \leqslant$ scalars
Add and scale vectors like usual.
For example,

$$
\begin{aligned}
& \text { For example, } \\
& \begin{array}{l}
\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
\quad=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{1}+b_{n}\right) x^{n}
\end{array}
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \\
& \quad=\left(\alpha a_{0}\right)+\left(\alpha a_{1}\right) x+\cdots+\left(\alpha a_{n}\right) x^{n}
\end{aligned}
$$

Also,

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n}=b_{0}+b_{1} x+\cdots+b_{n} x^{n}
$$

if and only if

$$
a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{n}=b_{n}
$$

And,

$$
\overrightarrow{0}=0+0 x+0 x^{2}+\cdots+0 x^{n}
$$

This will be a vector space.

