Math 2550-01

$$
2 / 27 / 24
$$

Theorem: Let A be an non matrix that is invertible, then there exists only one $n \times n$ matrix B that is an inverse of A [ie where $A B=B A=I_{n}$]

Notation: If A is invertible, then we can denote its unique inverse by $A^{-1} \propto B$
Ex: $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$
Last time we saw that $A^{-1}=\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)$

How to find A^{-1} if it exists
Let A be an $n \times n$ matrix $\in \underset{\substack{s \text { square } \\ \text { matrix }}}{\text { Hat }}$
Procedure: Start with the matrix

$$
\left(A \mid I_{n}\right)
$$

Do row reduction on the above matrix until the left side is either I_{n} or has a row of zeros.
If you end up with In on the left side, then the right side will have A^{-1} in it.
If you end up with a row of zeros on the left side then A^{-1} does not exist.

Ex: Let $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right) \cdot \leftarrow 2 \times 2$ Find A^{-1} if it exists.
Goal: Try to get I_{2} on the left side

$$
\text { So, } A^{-1}=\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right)}_{A} \xrightarrow[I_{2}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & -1 & -2 & 1 \\
\hline & \text { make } 0 & \begin{array}{c}
\text { make } \\
\text { this }
\end{array} \\
\hline
\end{array}\right) \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|lc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right) \\
& \xrightarrow{-R_{2}+R_{1} \rightarrow R_{1}}\left(\begin{array}{ll|cc}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1
\end{array}\right)
\end{aligned}
$$

Ex: Find A^{-1} if it exists When $A=\left(\begin{array}{cc}1 & 5 \\ -2 & -10\end{array}\right)$

So, $A=\left(\begin{array}{cc}1 & 5 \\ -2 & -10\end{array}\right)$ has ho inverse There is no $2 x^{2}$ matrix B where $A B=B A=I_{2}$.

Ex: Find A^{-1} if it exists where $A=\left(\begin{array}{ccc}3 & 0 & 3 \\ 1 & 1 & 2 \\ -2 & 3 & 0\end{array}\right) \leftarrow 3 \times 3$

$$
\begin{aligned}
& \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|ccc}
1 & 1 & 2 & 0 & 1 & 0 \\
3 & 0 & 3 & 1 & 0 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \text { make these } 0 \\
& \xrightarrow[2 R_{1}+R_{3} \rightarrow R_{3}]{-3 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|ccc}
1 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -3 & 1 & -3 & 0 \\
0 & 5 & 4 & 0 & 2 & 1
\end{array}\right)
\end{aligned}
$$

make this 1

$$
\begin{aligned}
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{lll|lll}
1 & T & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & -1 / 3 & 1 & 0 \\
0 & 5 & 4 & 0 & 2 & 1
\end{array}\right) \\
& \underset{\text { make these }}{ }\left(\begin{array}{lll|lll}
-5 R_{2}+R_{3} \rightarrow R_{3}
\end{array}\right. \\
& -R_{2}+R_{1} \rightarrow R_{1} \\
& \left(\begin{array}{lll|lll}
1 & 0 & 1 & 1 / 3 & 0 & 0 \\
0 & 1 & 1 & -1 / 3 & 1 & 0 \\
0 & 0 & -1 & 5 / 3 & -3 & 1
\end{array}\right)
\end{aligned}
$$

make this I

$$
\xrightarrow{-R_{3} \rightarrow R_{3}}\left(\begin{array}{lll}
1 & 0 \\
0 & 1 \\
0 & 0 & 1 \\
1 & \left.\begin{array}{lll}
1 \\
1
\end{array} \left\lvert\, \begin{array}{ccc}
1 / 3 & 0 & 0 \\
-1 / 3 & 1 & 0 \\
-5 / 3 & 3 & -1
\end{array}\right.\right) \\
\text { make these } 0
\end{array}\right)
$$

$$
\xrightarrow[-R_{3}+R_{2} \rightarrow R_{2}]{-R_{3}+R_{1} \rightarrow R_{1}}(\underbrace{\left.\begin{array}{lll|lll}
1 & 0 & 0 & 2 & -3 & 1 \\
0 & 1 & 0 & 4 / 3 & -2 & 1 \\
0 & 0 & 1 & -5 / 3 & 3 & -1
\end{array}\right)}_{I_{3}} \underbrace{4}_{A^{-1}} 1
$$

So when $A=\left(\begin{array}{ccc}3 & 0 & 3 \\ 1 & 1 & 2 \\ -2 & 3 & 0\end{array}\right)$
We have $A^{-1}=\left(\begin{array}{ccc}2 & -3 & 1 \\ 4 / 3 & -2 & 1 \\ -5 / 3 & 3 & -1\end{array}\right)$.
This means

$$
\begin{aligned}
A A^{-1}= & I_{3}=A^{-1} A \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Theorem Let A and B be $n \times n$ matrices that are both invertible. \leftarrow $\left[I e, A^{-1}\right.$ and B^{-1} exist. $] \leftarrow$
Then:
(1) $A B$ is invertible and $\frac{\text { note: }}{(A B)^{-1}}$

$$
(A B)^{-1}=B^{-1} A^{-1} \neq A^{-1} B^{-1}
$$

(2) A^{\top} is invertible and

$$
\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}
$$

Let's use inverses to solve systems. We need a new way to write a system of linear equations.
Given the system

$$
\begin{gather*}
\text { Given the } \\
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \tag{*}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gather*}
$$

$$
\text { Let }\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \vec{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Then the system $(*)$ is equivalent to

$$
\overrightarrow{A x}=\vec{b}
$$

matrix
multiplication

Ex: Consider the system

$$
\begin{align*}
& \begin{array}{c}
x+2 y=-1 \\
3 x-5 y=7
\end{array} \tag{*}\\
& A=\left(\begin{array}{cc}
1 & 2 \\
3 & -5
\end{array}\right), \vec{x}=\binom{x}{y}, \vec{b}=\binom{-1}{7}
\end{align*}
$$

Then

$$
\vec{A} \vec{x}=\vec{b}
$$

becomes

$$
\left(\begin{array}{cc}
1 & 2 \\
3 & -5
\end{array}\right)\binom{x}{y}=\binom{-1}{7}
$$

which becomes

$$
\left.\left.\begin{array}{l}
\text { ch becomes } \\
\left(\begin{array}{cc}
(1 & 2
\end{array}\right) \cdot\binom{x}{y} \\
(3
\end{array}\right)=\binom{-1}{7} \cdot\binom{x}{y} .4\right)
$$

which gives

$$
\binom{x+2 y}{3 x-5 y}=\binom{-1}{7}
$$

Which is equivalent to $(*)$

$$
\begin{aligned}
& x+2 y=-1 \\
& 3 x-5 y=7
\end{aligned}
$$

