Ex: Solve

$$
\left[\begin{array}{r}
x+y+2 z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{array}\right.
$$

we want a here
male these into zeros

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 4 & -3 & 1 \\
3 & 6 & -5 & 0
\end{array}\right)
$$

$$
\xrightarrow[\uparrow]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 2 & -7 & -17 \\
3 & 6 & -5 & 0
\end{array}\right)
$$

$\left(\begin{array}{lll|l}-2 & -2 & -4 & -18\end{array}\right) \leftarrow-2 R_{1}$

$$
\begin{array}{r}
\left(\left.\begin{array}{rrrr}
-2 & -2 & -4 & 1
\end{array} \frac{\left(\left.\begin{array}{ccc}
2 & 4 & -3
\end{array} \right\rvert\,\right.}{(0} 42-7 \right\rvert\,-17\right)
\end{array} \text { new } R_{2}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 2 & -7 & -17 \\
3 & 6 & -5 & 0
\end{array}\right) \\
& \xrightarrow[4]{-3 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c}
1 & 1 \sqrt{2} & 9 \\
0 & 2 & -7 \\
0 & -17 \\
3 & -17 \\
-27
\end{array}\right) \\
& (-3-3-6 \mid-27) \leftarrow-3 R_{1} \\
& +\left(\begin{array}{llll}
3 & 6 & -51 & 0
\end{array}\right) \leftarrow R_{3} \\
& \begin{array}{lll|l}
\left(\begin{array}{llll}
0 & 3 & -11 & -27
\end{array}\right) & \text { new } R_{3}
\end{array} \\
& \xrightarrow{\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 3 & -11 & -27
\end{array}\right) \\
& \text { Make this } \\
& \text { zero }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 3 & -11 & -27
\end{array}\right) \\
& \xrightarrow[\hat{r}]{-3 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c|c}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & -\frac{1}{2} & -\frac{3}{2}
\end{array}\right) \\
& \left(\begin{array}{lll|l}
0 & -3 & \frac{21}{2} & \frac{51}{2}
\end{array}\right) \sigma-3 R_{2} \\
& +\left(\begin{array}{llll}
0 & 3 & -11 & \mid-27
\end{array}\right) \longleftarrow R_{3} \\
& \left(\begin{array}{lll|l}
0 & 0 & -\frac{1}{2} & \left.-\frac{3}{2}\right) \\
\text { new } R_{3}
\end{array}\right. \\
& \xrightarrow{-2 R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
\begin{array}{ccc}
1 & 1 & 2 \\
\begin{array}{c}
\text { left side is } \\
\text { row echelon }
\end{array} & 9 \\
0 & 1 & \frac{-7}{2}
\end{array} & \frac{-17}{2} \\
0 & 0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Now turn the reduced matrix back into equations.

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
z & =3
\end{aligned}
$$

(1) leading
(2) variables
(2) are x, y, z
(3) There are no free variables

Solve in terms of leading variables.

$$
\begin{align*}
& x=9-y-2 z \tag{1}\\
& y=\frac{-17}{2}+\frac{7}{2} z \tag{2}\\
& z=3 \tag{3}
\end{align*}
$$

Now we back-substitute starting at the last equation and going upwards. $\quad \square$
(3) gives $z=3$

$$
\begin{aligned}
& \text { gives } \\
& \begin{aligned}
y=-\frac{17}{2}+\frac{7}{2} z & =-\frac{17}{2}+\frac{7}{2}(3) \\
& =2
\end{aligned}
\end{aligned}
$$

So, $y=2$
(1) gives

$$
x=9-y-2 z
$$

So $x=1$
Thus, the only solution to the system is

$$
\begin{aligned}
& \text { he system } \\
& \begin{array}{l}
x=1 \\
y=2 \\
z=3
\end{array} \text { or }(x, y, z)=(1,2,3)
\end{aligned}
$$

Let's check the answer to make sure it works

Original
System

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { System } \\
x+y+2 z=9 \\
2 x+4 y-3 z=1 \\
3 x+6 y-5 z=0
\end{array}\right\} \begin{array}{l}
1+2+2(3)=9 \\
2(1)+4(2)-3(3)=1 \\
3(1)+6(2)-5(3)=0 \\
x=1, y=2, z=3 \text { works }
\end{array} \text { }
\end{aligned}
$$

This is the only solution
(*) to the system.
There is no other solution

Ex: Solve

$$
\begin{aligned}
& -2 b+3 c=1 \\
& 3 a+6 b-3 c=-2 \\
& 6 a+6 b+3 c=5 \\
& \text { want } \\
& \text { a } 1 \\
& \text { here } \\
& \left(\begin{array}{ccc|c}
0 & -2 & 3 & 1 \\
3 & 6 & -3 & -2 \\
6 & 6 & 3 & 5
\end{array}\right) \\
& \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrr|r}
3 & 6 & -3 & -2 \\
0 & -2 & 3 & 1 \\
6 & 6 & 3 & 5
\end{array}\right) \\
& \xrightarrow{\frac{1}{3} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & \sqrt{2} & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
6 & 6 & 3 & 5
\end{array}\right) \\
& \xrightarrow{-6 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
0 & -6 & 9 & 9
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & -2 & 3 & 1 \\
0 & -6 & 9 & 9
\end{array}\right) \quad\left[\begin{array}{c}
\text { put a } \\
1 \\
\text { here }
\end{array}\right. \\
& \xrightarrow{-\frac{1}{2} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & -1 & -2 / 3 \\
0 & 1 & -3 / 2 & -1 / 2 \\
0 & -6 & 9 & 9
\end{array}\right) \underset{\substack{\text { make } \\
\text { this } \\
\text { zero }}}{ }
\end{aligned}
$$

Now we turn it back into equations.

We get

$$
\begin{aligned}
a+2 b-c & =-2 / 3 \\
b-3 / 2 c & =-1 / 2 \\
0 & =6
\end{aligned}
$$

\rightarrow Since we have $0=6$ in the last equation this tells us that the original system is inconsistent that is there are no solutions to the system.

Ex: Solve

$$
\begin{aligned}
& 5 x_{1}-2 x_{2}+6 x_{3}=0 \\
& -2 x_{1}+x_{2}+3 x_{3}=1 \\
& \text { puts } \\
& \left(\begin{array}{ccc|c}
{[5} & -2 & 6 & 0 \\
-2 & 1 & 3 & 1
\end{array}\right) \\
& \xrightarrow[\text { Cold have }]{2 R_{2}+R_{1} \rightarrow R_{1}}\left(\underset{\sim}{1} \begin{array}{ccc|c}
1 & 0 & 12 & 2 \\
-2 & 1 & 3 & 1
\end{array}\right) \\
& \text { Could have } \\
& \text { instead } \\
& \text { done } \\
& \xrightarrow{\frac{1}{5} R_{1} \rightarrow R_{1}} 2 R_{1}+R_{2} \rightarrow R_{2}\left(\begin{array}{lll|l}
1 & 0 & 12 & 2 \\
0 & 1 & 27 & 5
\end{array}\right) \\
& \text { this left side }
\end{aligned}
$$

is in row echelon form

Turn it back into equations.
x_{1}

$$
\begin{array}{r}
+12 x_{3}=2 \\
\left(x_{2}\right)+27 x_{3}=5 \tag{2}
\end{array}
$$

leading variables are x_{1}, x_{2}.
free variable is x_{3}
Solve in terms of leading variables.

$$
\begin{align*}
& x_{1}=2-12 x_{3} \tag{1}\\
& x_{2}=5-27 x_{3} \tag{2}
\end{align*}
$$

Give the free variables a new name.
Let $x_{3}=t$
Now backsubstitute.
(2) gives

$$
\begin{align*}
& x_{2}=5-27 x_{3} \\
& x_{2}=5-27 t \tag{3}
\end{align*}
$$

(1) gives

$$
\begin{aligned}
& x_{1}=2-12 x_{3} \\
& x_{1}=2-12 t
\end{aligned}
$$

Answer

$$
\begin{aligned}
& x_{1}=2-12 t \\
& x_{2}=5-27 t \\
& x_{3}=t
\end{aligned}
$$

where
t can
be any
real number
In finitely many solutions, for example

$$
\begin{aligned}
& t=1 \\
& x_{1}=2-12=-10 \\
& x_{2}=5-27=-22 \\
& x_{3}=1
\end{aligned}
$$

$$
\begin{aligned}
& t=0 \\
& x_{1}=2-0=2
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=5-0=5
\end{aligned}
$$

$$
x_{3}=0
$$

