Math 2550

$$
2 / 13 / 24
$$

Topic 3 - Systems of linear equations

Def: A linear equation in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ is an equation of the form

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b \tag{*}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}, b$ are constant real numbers.
The solution space of $(*)$ consists of the set of all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that Solve $(*)$.

Ex: Some more linear equs:

$$
\begin{aligned}
& 5 x_{1}-10 x_{2}+\frac{1}{2} x_{3}=7 \\
& \sqrt{2} x+y-3 w+\frac{1}{3} z=0
\end{aligned}
$$

Ex: Some non-linear eqns:

$$
\begin{gathered}
x^{2}+y=6 \\
5 \cos (x)+y=4
\end{gathered}
$$

Def: A system of m linear equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ is a list of m equations of the form:

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \tag{*}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{m}
\end{gather*}
$$

where the $a_{i j}$ are constant real \#s. The augmented matrix for $(*)$ is

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

The solution space of the system ($*$) consists of all $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that simultaneously solve all m equations. That is, the common solutions to all m equations.

Ex:

$$
\left.\begin{array}{l}
\frac{E x}{x+2 y}=3 \\
4 x+5 y=6
\end{array}\right] \begin{aligned}
& \text { system of } \\
& m=2 \text { linear equ } \\
& n=2
\end{aligned}
$$

Augmented matrix:

$$
\left(\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

The solution space for the system consists of $(x, y)=(-1,2)$
As a set it is

$$
\{(-1,2)\}
$$

Ex: Consider the system

$$
\left.\begin{array}{l}
x+2 y=3 \\
4 x+8 y=6
\end{array}\right] \begin{array}{ll}
\text { system of } & m=2 \\
\text { lin. eqns. } \\
n=2 \\
\text { unknow }
\end{array}
$$

unknowns
Augmented matrix: $\left(\begin{array}{ll|l}1 & 2 & 3 \\ 4 & 8 & 6\end{array}\right)$

These lines den't intersect. So the solution space is empty! There are no solutions to the system.

Ex:

$$
\left.\begin{array}{l}
x+2 y=3 \\
4 x+8 y=12
\end{array}\right] \begin{array}{ll}
m=2 & \text { lin equs. } \\
n=2
\end{array} \quad \text { unknowns. }
$$

Augmented matrix: $\left(\begin{array}{cc|c}1 & 2 & 3 \\ 4 & 8 & 12\end{array}\right)$

Its the same line twice. The solution space is all (x, y) that Solve $x+2 y=3$. It's an infinite Solution space.

Ex:

$$
\begin{aligned}
x+y+2 z & =9 \\
2 x-3 z & =1 \\
-x+6 y-5 z & =0
\end{aligned}
$$

$m=3$ lin. equs $n=3$ unknowns

Augmented matrix:

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 9 \\
2 & 0 & -3 & 1 \\
-1 & 6 & -5 & 0
\end{array}\right)
$$

Exit:

$$
\begin{aligned}
2 y-3 w & =5 \\
4 x+y+w-2 z & =0 \\
x-y+w & =1
\end{aligned}
$$

Augmented matrix

$$
\left(\begin{array}{cccc|c}
0 & 2 & -3 & 0 & 5 \\
4 & 1 & 1 & -2 & 0 \\
1 & -1 & 1 & 0 & 1
\end{array}\right)
$$

Def: Given a system of linear equations there are three operations that we call elementary row operations

They are:
(1) Multiply one of the rows/equations by a non-zeco constant
(2) Interchange two rows/equations
(3) Add a multiple of one row/equation to another row/ equation

Ex: $\binom{$ Multiply row/equation by }{ non-zero constant }

$$
\begin{array}{|l|}
\hline \text { Equation viewpoint } \\
\begin{array}{|r}
3 x-6 y+9 z=2 \\
x+z=5 \\
2 x-y-z=-1
\end{array} \\
\hline
\end{array}
$$

Matrix viewpoint

$$
\left(\begin{array}{ccc|c}
3 & -6 & 9 & 2 \\
1 & 0 & 1 & 5 \\
2 & -1 & -1 & -1
\end{array}\right) \xrightarrow{\frac{1}{3} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & -2 & 3 & 2 / 3 \\
1 & 0 & 1 & 5 \\
2 & -1 & -1 & -1
\end{array}\right)
$$

Ex: (Interchange two rows/equations)

Equation viewpoint

$$
\begin{aligned}
3 x-6 y+9 z & =2 \\
x+z & =5 \\
2 x-y-z & =-1
\end{aligned}
$$

$$
\xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cr}
x+z=5 \\
3 x-6 y+9 z=2 \\
2 x-y-z=-1
\end{array}\right]
$$

matrix viewpoint

$$
\left.\begin{array}{|ccc|c}
\hline \text { matrix viewpoint } \\
\left(\begin{array}{ccc}
3 & -6 & 9 \\
1 & 0 & 1 \\
2 & -1 & -1
\end{array}\right. & -1
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 0 & 1 & 5 \\
3 & -6 & 9 & 2 \\
2 & -1 & -1 & -1
\end{array}\right)
$$

Ex: (Add a multiple of one row $\left.\begin{array}{c}\text { to another row }\end{array}\right)$
equation viewpoint

$$
\begin{aligned}
& \text { matrix viewpoint } \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
2 & 1 & 2 & 0 \\
1 & -1 & -1 & 3
\end{array}\right) \xrightarrow[4]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & -1 & 4 & -2 \\
1 & -1 & -1 & 3
\end{array}\right)
\end{aligned}
$$

