Math 2150-02 9/29/25

-			

Topic 8- Method of Undetermined coefficients

We want to solve

$$a_2y'' + a_1y' + a_0y = b(x)$$

where a_0, a_1, a_2 are constants

$$\frac{Ex}{y'' + 3y' + 2y = 2x}$$
 $y'' - y' + y = 2sin(3x)$

[Method:]

Step 1: Find the general solution yn to the homogeneous equation $\alpha_2 y'' + \alpha_1 y' + \alpha_0 y = 0$

TOPIC

Step 2: Find a particular solution yp to $\alpha_2 y'' + \alpha_1 y' + \alpha_0 y = b(x)$

TOPIC

Step 3: The general solution to $\alpha_2 y'' + \alpha_1 y' + \alpha_0 y = b(x)$ is $y = y_h + y_p$

TOPIC

How do we gu in step 2? This topic is a Here's a table	Thats what bout.
to guess.	guess yp
constant	A
degree one polynomial like 2x+1 or 5x	Ax+B
degree two polynomial like 5x or x-x+1	Ax+Bx+C
Sin (kx)	Asin(kx)+Bcos(kx)

where k is a constant Cos (kx) Asin(RX)+ Bcos(kx) where k is a constant exponential such as ekx loe Aex R is a constant degree one poly (Ax+B)ex times exponential Sych as xe or (2x-1)e where k is a constant

Ex: Solve
$$\frac{2}{y'' + 3y' + 2y} = 2x^2$$

Step 1: Solve the
homogeneous equation
$$y'' + 3y' + 2y = 0$$
The characteristic equation is
$$r^{2} + 3r + 2 = 0$$

$$(r+1)(r+2) = 0$$

$$(r+1=0)(r+2=0)$$

$$(r=-1)(r=-2)$$

 So_{j} $\Gamma = -1_{j} - 2$. Thus the general solution is $y_h = c_1 e^{-x} + c_2 e^{-2x}$

Step 2: Find a particular

Solution yp to

y"+3y'+2y=2x

degree two
polynomial

We guess Ne guess $y_p = Ax^2 + Bx + C$ We plug this into the ODE

and try to find A, B, C

that make yp solve the ODE. A, B, C are constants to) be determined, We have yp= Ax+Bx+C yo= 2AX+B $y_{\rho}^{\prime\prime}=2A$ $y'' + 3y' + 2y = 2x^2$ Plug this into to get: $(2A)+3(2Ax+B)+2(Ax+Bx+c)=2x^{2}$ yé yé We get:

(I) gives
$$A = 1$$
.
Plug $A = 1$ into (2) to get:
 $6(1)+2B = 0$
So, $B = -3$.

Plug
$$A=1$$
, $B=-3$ into (3) to get: $Z(1)+3(-3)+ZC=0$
Then, $C=7/2$

Thus,

$$y_p = A x^2 + B x + C$$
 $= x^2 - 3x + \frac{7}{2}$

Step 3: The general solution to $y'' + 3y' + 2y = 2x^2$

$$y = y_h + y_p$$

 $y = c_1 e^{-x} + c_2 e^{-2x} + x^2 - 3x + \frac{7}{2}$

Where ci, cz are any constants

Ex: Solve $y'' - y' + y = 2 \sin(3x)$

Step 1: We need to egn. Solve the homogeneous y'' - y' + y = 0characteristic poly. is r2-r+1=0 roots are: $\Gamma = -(-1) \pm \sqrt{(-1)^2 - 4(1)(1)}$

Then,

 $y_h = c_1 e^{\lambda x} \cos(\beta x) + c_2 e^{\lambda x} \sin(\beta x)$ $= c_1 e^{\times/2} \cos(\frac{\sqrt{3}}{2}x) + c_2 e^{\times/2} \sin(\frac{\sqrt{3}}{2}x)$

cij cz are any constants. Where

Next time: finish this one ...