Math 2150-02 9/24/25

(Topic 7 continued...)

Ex: Solve
$$4y'-y'=0$$

$$y(0)=-1$$

$$y'(0)=1$$

The characteristic poly, is $4r^{2}-r=0$ r(4r-1)=0 r=0 r=1/4

The general solution

$$+0$$
 $+ y'' - y' = 0$ is

 $y_h = c_1 e^{0x} + c_2 e^{\frac{1}{4}x}$
 $y_h = c_1 + c_2 e^{-\frac{1}{4}x}$

$$y_h(0) = -1$$

 $y_h(0) = 1$

We have
$$x/4$$

$$y_h = c_1 + c_2 e$$

$$y_h' = \frac{1}{4} c_2 e$$

We want:

$$C_{1} + C_{2} e^{0/4} = -1$$

$$\frac{1}{4} C_{2} e^{0/4} = 1$$

$$\frac{1}{4} C_{2} e^{0/4} = 1$$

$$\frac{1}{4} C_{2} e^{0/4} = 1$$

$$4-\left(y_{h}(0)=-1\right)$$

$$y_{h}(0)=1$$

2) gives us
$$c_2 = 4$$
.
Plug into (1) to get $c_1 = -1 - c_2$
 $= -1 - 4 = -5$

$$is$$
 $y_h = -5 + 4 e^{x/4}$

Why do the formulas from last time work? Let's look at case 1. Suppose we are looking at $a_2 y'' + a_1 y' + a_0 y = 0$ Where az, ai, ao are constants and $\alpha_2 \neq 0$. Let's try y = e where r is a constant. We have y = erx y'= rerx y"=rerx

If we plug this into $a_2 y'' + a_1 y' + a_0 y = 0$ We have $\alpha_2(r^2e^{rx}) + \alpha_1(re^{rx}) + \alpha_0(e^{rx}) = 0$ This becomes $e^{r \times \left[\alpha_2 r^2 + \alpha_1 r + \alpha_0\right]} = 0$ never (this will be 0)

when r is a root of the root of the characteristic poly.

characteristic poly. $\alpha_2 r^2 + \alpha_1 r + \alpha_0 = 0$

So if we are in case I where $a_2r^2+a_1r+a_0=0$

has two distinct real roots r_1, r_2 $(r_1 \neq r_2)$ then $y_1 = e^{r_1 \times}$ and $y_2 = e^{r_2 \times}$ will both be solutions to $\alpha_2 \gamma'' + \alpha_1 \gamma' + \alpha_0 = 0.$ Are y, and yz linearly inde pendent? $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$ $= \frac{e^{\Gamma_1 x} e^{\Gamma_2 x}}{e^{\Gamma_2 x}}$

 $= (e^{r_1 \times})(r_2 e^{r_2 \times}) - (r_1 e^{r_1 \times})(e^{r_2 \times})$ $= (e^{r_1 \times})(r_2 e^{r_2 \times}) - (r_1 e^{r_1 \times})(e^{r_2 \times})$

$$= \begin{pmatrix} \Gamma_2 - \Gamma_1 \end{pmatrix} e^{\Gamma_1 x + \Gamma_2 x}$$

$$= \begin{pmatrix} \Gamma_2 - \Gamma_1 \neq 0 \end{pmatrix} \text{ Never}$$

$$\text{Vecause}$$

$$\text{V2} \neq \Gamma_1$$

Thus, W(y1,y2) is never O. So, $y_1 = e^{r_1 \times}$ and $y_2 = e^{r_2 \times}$ are linearly independent solutions to $a_2y'' + a_1y' + a_2y = 0$ for $I = (-\infty, \infty)$. Thus, the general solution is $y_h = c_1 e^{i} + c_2 e$

Cases 2/3 are online...