Math 2150-02 9/17/25

Ex: Let's solve
$$y'' - 7y' + 10y = 24e^{x}$$
on $I = (-\infty, \infty) + (-\infty, \infty)$

Stepli Find two linearly independent solutions to y"-7y'+10y= 1 homogeneous equation Let 2x $f_{1}(x) = C$ in topic 7

we will see

how to find

these $f_2(x) = e^{5x}$

Last time we showed that f, and fz are linearly independent. Let's show they solve y'-7y'+10y=0. For f, we get: $f_1 = e^{2x}$ $f_1' = 2e^{2x}$ $f_1'' = 4e^{2x}$ f"- 7f'+ 10f, $= 4e^{2x} - 7(2e^{2x}) + 10(e^{2x})$ = 4e2x-14e2x+10e2x

So, f, solves the ODE. Let's try tz. We get $f_z = e^{5x}, f_z = 5e^{5x}, f_z = 25e^{5x}$ f"-7f2+10f2 $= 25e^{5x} - 7(5e^{5x}) + 10(e^{5x})$ $= 25e^{5x} - 35e^{5x} + 10e^{5x}$ So, fz also solves y-7y+10y=0 Since $f_1(x) = e^{2x}$ $f_2(x) = e^{5x}$

are linearly independent selutions to y"-7y'+loy=U We know that every Solution to y"-7y'+10y=0 is of the form $y_h = c_1 e^{2x} + c_2 e^{5x}$ cijoz are any constants

Note: There are infinitely

Many selutions. Here are

two of them: $C_1 = 1, C_2 = -3; \quad y_h = e^2 - 3e^2$ $C_1 = \frac{1}{2}, C_2 = \sqrt{2}; \quad y_h = \frac{1}{2}e^{2x} + \sqrt{2}e^{5x}$ $C_1 = \frac{1}{2}, C_2 = \sqrt{2}; \quad y_h = \frac{1}{2}e^{2x} + \sqrt{2}e^{5x}$

Step 2: Find a particular solution yp to y"-7y'+10y=24ex

Let's check that the find this it works.

We 9et: yp = 6ex, yp = 6ex, yp = 6ex

 $y_{e}^{y}-7y_{p}+10y_{p}=6e^{x}-7(6e^{x})+10(6e^{x})$

$$= 6e^{x} - 42e^{x} + 60e^{x}$$

= 24e^x

Thus, $y_p = 6e^x$ solves $y'' - 7y' + 10y = 24e^x$.

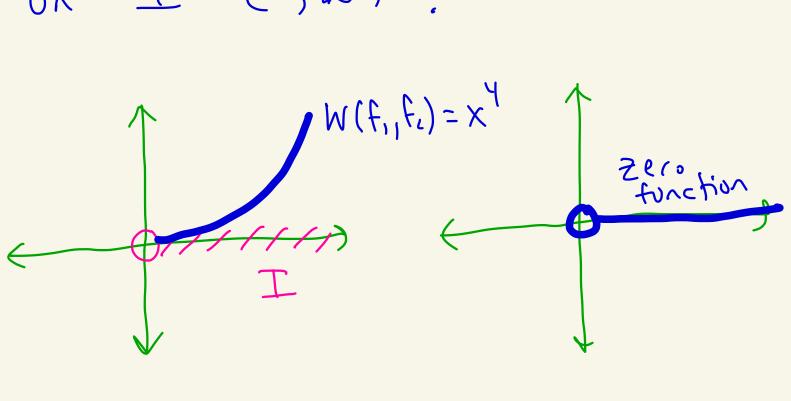
Ex: Let's solve $x^2y'' - 4xy' + 6y = \frac{1}{x}$ on $T = (0, \infty) \leftarrow 0 < x$

Step 1: Find two linearly independent solutions to $x^2y'' - 4xy' + 6y = 0$ homogeneous equation Let = x $f_{1}(x) = x$ topic lo is where we learn how to find these $f_2(x) = x^3$

Let's plug them in the Wronskian to test for linear independence. We have: $W(f_1,f_2) = \begin{cases} f_1 & f_2 \\ f_1' & f_2' \end{cases}$ $= \begin{pmatrix} 2 & 3 \\ \times & 3 \\ 2 & 3 \\ \end{pmatrix}$ $= (x^2)(3x^2) - (x^3)(2x)$ $=3x^{4}-2x^{4}$ $= \times^{4}$

Is this the Zero function

$$0 \wedge T = (0, \infty)$$
?



No, they aren't the same Thus, $f_1(x)=x^2$, $f_2(x)=x^3$ are linearly independent $0 \vee \mathcal{I} = (0 \vee \infty).$ Let's show they solve x'y''-4xy+6y=0

For
$$f_1 = x^2$$
 we get:
 $f_1 = x^2$, $f_1' = 2x$, $f_1'' = 2$
So,
 $x^2 f_1'' - 4x f_1' + 6f_1$
 $= x^2 (2) - 4x (2x) + 6(x^2)$
 $= 2x^2 - 8x^2 + 6x^2$
 $= 0$
So, f_1 works.
For $f_2 = x^3$ we get:
 $f_2 = x^3$, $f_2' = 3x^2$, $f_2'' = 6x$
So,
 $x^2 f_2'' - 4x f_2' + 6f_2$
 $= x^2 (6x) - 4x (3x^2) + 6(x^3)$

$$= 6 \times^{3} - 12 \times^{3} + 6 \times^{3}$$

= 0

So, fz works also.

Summary: Since
$$f_1(x) = x^2$$

and $f_2(x) = x^3$ are linearly
independent solutions to
 $x^2y'' - 4xy' + 6y = 0$
every solution is of the form
 $y_1 = c_1 x^2 + c_2 x^3$
where $c_1 c_2$ are constants

Step 2: Find a particular solution yp to
$$x^2y'' - 4xy' + 6y = \frac{1}{x}$$
 on $I = (0, \infty)$

Let
$$y_{p} = \frac{1}{12x} = \frac{1}{12}x^{-1}$$
Thopic 9
Shows to
Now to
Plug if in.
$$y_{p} = \frac{1}{12}x^{-1}$$

$$y_{p} = -\frac{1}{12}x^{-2}$$

$$y_{p}' = -\frac{1}{12}(-2x^{-3}) = \frac{1}{6}x^{-3}$$

$$y_{p}'' = -\frac{1}{12}(-2x^{-3}) = \frac{1}{6}x^{-3}$$

$$\times \frac{2}{3} \frac{1}{9} - \frac{4}{3} \times \frac{4}{9} + 699$$

$$= \times^{2} \left(\frac{1}{6} \times^{-3} \right) - \frac{4}{3} \times \left(-\frac{1}{12} \times^{-2} \right) + 6 \left(\frac{1}{12} \times^{-1} \right)$$

$$=\frac{1}{6}x^{-1}+\frac{1}{3}x^{-1}+\frac{1}{2}x^{-1}$$

$$=\left(\frac{1+2+3}{6}\right)\times^{-1}$$

$$=$$
 \times^{-1} $=$ $\frac{1}{\times}$

So,
$$y_p = \frac{1}{12} \times 1$$
 solves

$$x^{2}y'' - 4xy' + 6y = \frac{1}{x}$$

Summary: The general solution of $x^2y''-4xy'+6y=\frac{1}{x}$ $D = (0, \infty)$ is $y = c_1 x^2 + c_2 x^3 + \frac{1}{12} x^{-1}$ CI, Cz are any constants Where