## Math 2150-02 8/27/25

## Topic 1 continued...

Ex: Show that  $f(x) = c_1 e^x + c_2 e^{-2x}$ is a solution to y"-4y=0 on  $T = (-\infty, \infty)$ . Here c,, c, are any constants  $Ex: c_1 = 5, c_2 = -\frac{1}{2}$  $f(x) = 5e^{2x} - \frac{1}{2}e^{-2x}$ 

In topic 7

We will
see how

In topic 7

We will

See how

This

Let's plug f into y"-4y=0

and show it solves it. We get  $f(x) = c_1 e^{2x} + c_2 e^{-2x}$  $f'(x) = 2c_1e^{2x} - 2c_2e^{-2x}$  $f''(x) = 4c_1e^{2x} + 4c_2e^{-2x}$   $I=(-\infty,\infty)$ Let's plug f into y"-4y=0. We have £"-4f  $= (4c_1e^{2x} + 4c_2e^{2x}) - 4(c_1e^{2x} + c_2e^{2x})$ Su, f dues solve y'-4y=0.

Ex: Find 
$$c_1, c_2$$
 where

 $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ 

Solves the initial-value problem

 $y'' - 4y = 0$ 
 $y'' - 4y = 0$ 
 $y'' - 4y = 0$ 
 $y'(0) = 0$ 
 $y'(0) = 0$ 
 $y'(0) = 0$ 
 $y'(0) = 0$ 
 $y'' - 4y = 0$ 
 $y'' - 4y$ 

We already know that
$$f(x) = c_1 e^{2x} + c_2 e^{-2x}$$

$$solves \quad y'' - 4y = 0.$$

$$Let's \quad make \quad it \quad satisfy$$

$$f'(0) = 0$$

$$f(0) = 1$$

We have  

$$f(x) = c_1e^{2x} - 2c_2e^{-2x}$$
  
 $f'(x) = 2c_1e^{2x} - 2c_2e^{-2x}$ 

So we need

$$1 = c_1 e^{2(0)} + c_2 e^{2(0)} = 0$$

$$0 = 2c_1 e^{2(0)} - 2c_2 e^{2(0)} = 0$$

So we need
$$1 = c_1 e^{2(0)} + c_2 e^{-2(0)}$$

$$0 = 2c_1 e^{2(0)} - 2c_2 e^{-2(0)}$$

$$0 = c_1 e^{2(0)} - 2c_2 e^{-2(0)}$$

(z) gives  $c_1 = c_2$ . Plug  $C_1 = C_2$  into ① to get  $l = C_1 + C_1$ Thus, <= 1/2

Then,  $c_2 = c_1 = \frac{1}{2}$ .
So,

$$S_{0}$$
,  
 $f(x) = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$ 

## Topic 3- First order linear ODEs

We will give a method to solve

 $y' + \alpha(x)y = b(x)$ 

on any interval I where  $\alpha(x)$  and b(x) are continuous.

Since a(x) is continuous We can find an anti-derivative

 $A(x) = \int \alpha(x) dx$ 

 $S_0, | \frac{1}{x} = \alpha(x)$ 

Multiply y' + a(x)y = b(x)

by eA(x) to get:  $e^{A(x)}y'+e^{A(x)}a(x)y=e^{A(x)}b(x)$ fhis side, is  $(e^{A(x)}, y)$ (fg)'=f'g+fg'check:  $(e^{A(x)}, y) = e^{A(x)} \cdot A'(x) \cdot y + e^{A(x)}, y$  $= e^{A(x)} \cdot \alpha(x) y + e^{A(x)} \cdot y'$ We get:  $\left(\begin{array}{cc} e^{A(x)}, & y \end{array}\right)^{1} = e^{A(x)}b(x)$ Integrate both sides to get

Thus,
$$y = \int e^{A(x)}b(x) dx$$

$$y = e^{A(x)}\int e^{A(x)}b(x) dx$$

$$y = e^{A(x)}\int e^{A(x)}b(x) dx$$
Same as:  $e^{A(x)}$ 

Since you can reverse the

Since you can reverse the above above process, the above for the general solution to the ODE.

anti-derivative

Let 
$$A(x) = \int 2x dx = x^2 dx$$
  
Multiply  $y' + 2xy = x$   
by  $e^{A(x)} = e^{x^2}$  to get:  
 $e^{x^2}y' + e^{x^2}2xy = xe^{x^2}$   
Quays equals  
 $\left(e^{A(x)}, y\right)'$ 

Thus, 
$$e^{x^2}$$
,  $y = \frac{1}{2}e^{x^2} + C$ 

So,

 $y = e^{-x^2}(\frac{1}{2}e^{x^2} + C)$ 

Thus,

 $y = \frac{1}{2}e^{-x^2} + Ce^{-x^2}$ 

So,

 $y = \frac{1}{2} + Ce^{-x^2}$ 

Where  $C$  is any constant

Ex: Let's solve

$$y' + cos(x)y = sin(x)cos(x)$$

on  $I = (-\infty, \infty)$ 

Let  $A(x) = \int cos(x)dx = sin(x)$ 

Multiply the above ODE

by  $e^{A(x)} = e^{sin(x)}$  to get:

 $e^{sin(x)}y' + e^{sin(x)}cos(x)y = e^{sin(x)}sin(x)cos(x)$ 

This is always

 $e^{A(x)}y'$ 

We get

We get

We get  $\left(e^{\sin(x)}, y\right) = e^{\sin(x)} \sin(x) \cos(x)$ 

Integrate to get  $e^{\sin(x)}, y = \int e^{\sin(x)} \sin(x) \cos(x) dx$ 

$$\int e^{\sin(x)} \sin(x) \cos(x) dx$$

$$= \int e^{t} \cdot t \, dt = t e^{t} - \int e^{t} dt$$

$$t = \sin(x)$$

$$dt = \cos(x) dx$$

$$LIATE$$

$$u = t$$

$$dv = e^{t} dt$$

$$V = e^{t}$$

$$Sudv = uv - Svdu$$

$$= t e^{t} - e^{t} + C$$

$$= \sin(x) e^{\sin(x)} - e^{\sin(x)} + C$$

So,  

$$e^{\sin(x)}$$
,  $y = \sin(x) e^{\sin(x)} + c$   
Thus,  
 $y = e^{-\sin(x)} \left[ \sin(x) e^{\sin(x)} - e^{\sin(x)} + c \right]$   
 $y = e^{\sin(x)} \left[ \sin(x) e^{\sin(x)} - e^{\sin(x)} + c \right]$ 

Therefore,

$$y = \sin(x) - 1 + Ce^{-\sin(x)}$$

Where C is any constant.