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Topic 3-First order

linear ODEs-
We will give a method

to solve

y + a(x)y = b(x)

on any
interval I where

a(x) and bexs are continuous .

Sinceaiscontinua erivative

A(x) = Sa(x)dx
So

,
A(x) = a(x)

Multiply y+ a(x)y = b(x)



by e
A(x1 to get :
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Integrate both sides to get



eA(x) . y = Se
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Thus ,
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Since you
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Ex: Let's solve

Y' + cos(x)y = sin(x)cos(x)

-F(x1dx = sin(x)

Multiply the above ODE

by eA() = e
sink' to get :

sin(x/sin(x)cos(X)gsin(x(y) + gin(x((x)y = e

-
this is always

(eA( ! y)/
We get

(gir(x) , y)) = eiv(x)sin(x)cos(x)



Integrate to get

gsinky=sin(x)sin(cos(x
Jesink'sin(x) cos(x)dx

Feelt= sin(X & #E
dt = cos(X) dX du =-[dv = etdt

Sudv = nv- Suduu
= tet-et + C

sin(x)
+ C= sin(lesivk

!
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Su ,

sin(x)
e · y =

sin(x)ein()
sin(x)

+ C

--Thus,-
sin(x

-
gsin(x) + C]

- sir(x) [sink)ey = e
-

↳us: t
Therefore,

y = Sin(X) - 1 + Cesiv(x)[
where C is any

constant.
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