Math 2150-02 11/5/25

(topic 12 continued...)

Ex: Consider

$$y'-2xy=0$$

$$y(0)=1$$

Xo=0 center of power series,

Let's find a power series solution!

So the solution we find will have radius of convergence $r = \infty$

We will expand our answer arund $x_0 = 0$. It will look like:

$$y(x) = y(0) + \frac{y'(0)}{1!} x + \frac{y''(0)}{2!} x^{2} + \frac{y'''(0)}{3!} x^{2} + \frac{y'''(0)}{4!} x^{4} + \cdots$$

Given:
$$y(0) = 1$$

$$y' - 2xy = 0$$

$$y' = 2xy$$

$$x=0$$

$$y'(0) = 2(0)[y(0)] = 2(0)(1) = 0$$

$$y'(0) = 0$$

NUW differentiate y'=2xy with respect to x to get:

$$y'' = 2y + 2xy'$$

$$y''(0) = 2[y(0)] + 2(0)[y(0)]$$

= $2[1] + 2(0)[0]$
= 2
 $y''(0) = 2$

Differentiate y''=2y+2xy'with respect to x to get:

$$y''' = 2y + 2y + 2xy''$$

$$y''' = 4y' + 2xy''$$

$$y'''(0) = 4[y(0)] + 2(0)[y''(0)]$$

$$2$$

Differentiale
$$y'''=4y'+2xy''$$
to get:

$$y'''' = 4y'' + 2y'' + 2xy'''$$

$$y'''' = 6y'' + 2xy'''$$

$$y'''' (0) = 6[y''(0)] + 2(0)[y''(0)]$$

$$y'''' (0) = 12$$

We get

$$y(x) = y(0) + \frac{y(0)}{1!} x + \frac{y''(0)}{2!} x^{2}$$

$$+ \frac{y'''(0)}{3!} x^{3} + \frac{y'''(0)}{4!} x^{4} + \cdots$$

$$= 1 + \frac{0}{1!} \times + \frac{2}{2!} \times$$

$$+ \frac{0}{3!} \times ^{3} + \frac{12}{4!} \times ^{4} + \cdots$$

So,

$$y(x)=1+x^2+\frac{1}{z}x^4+\cdots$$

With radius of convergence $r=\infty$

EX: Consider

$$y'' + x^{2}y' - (x-1)y = \ln(x)$$

$$y'(1) = 0$$

$$y(1) = 0$$

$$-x_{0} = 1$$

tind a power serier rolution and it's radius of convergence.

Ne expand around x = 1.

coefficients

$$x^2$$
 $y = 1$
 $y = 1$

The minimum of ∞ , and I So our solution will have radivs of convergence at least r=1. Let's find the solution. Given: y(1) = 0 y'(1) = 0

$$y'' + x^{2}y' - (x - 1)y = \ln(x)$$

$$y'' = \ln(x) - x^{2}y' + (x - 1)y$$
Plug in $x = 1$:
$$y''(1) = \ln(1) - (1)^{2}[y'(1)] + (1 - 1)[y(1)]$$

Differentiate

$$y'' = (x(x) - x^2y' + (x-1)y)$$

with respect to x to get:

$$y''' = \frac{1}{x} - 2xy' - x^2y'' + (1)y + (x-1)y'$$
Plug in $x = 1$:
$$y'''(1) = \frac{1}{x} - 2(1)[y'(1)] - (1)^2[y''(1)]$$

$$+ (1)[y(1)] + (1-1)[y'(1)]$$

$$y'''(1) = 1$$

If you differentiated again

you would get
$$y'''(1) = -3$$

Thus,
$$y(x) = \frac{1}{6}(x-1)^3 - \frac{1}{8}(x-1)^4 + 000$$

With radius of convergence is

ont least r=1.

converges at least here

Note that the reast has a second of the reast has