Math 2150-02 11/3/25

Topic 12 - Power series Solutions to ODEs

Def: We say that a function
$$f(x)$$
 is analytic at x_0 if it has a power series $f(x) = \sum_{n=0}^{\infty} a_n(x-x_0)^n$ centered at x_0 with positive radius of convergence $r>0$ radius of convergence $r>0$ [$r=\infty$ is allowed] $r=\infty$ is allowed] $r=\infty$ is allowed.

Ex: Is
$$f(x) = \sin(x)$$

analytic at $x_0 = 0$?
Yes.
 $Sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$
Power series for $sin(x)$
centered at $x_0 = 0$
radius of convergence $r = \infty$
 $converges$
 $the theorem = \infty$

Ex: Is
$$f(x) = \frac{1}{x}$$
 analytic at $x_0 = 1$?

Yes.

 $\frac{1}{x} = 1 - (x-1) + (x-1)^2 - (x-1)^3 + \cdots$

radius of convergence $r = 1$

diverges converges diverges

 $\frac{1}{x_0 = 1}$
 $\frac{1}{x_0 = 1}$
 $\frac{1}{x_0 = 1}$

Ex: Is
$$f(x) = x^2$$
 analytic
 $a + x_0 = 2$?
Yes.
 $x^2 = 4 + 4(x-2) + (x-2)^2$
radius of convergence $r = \infty$
(onverges
 $2 = x_0$

Facts:

- polynomials are analytic at every Xo
- e x sin(x), cos(x) are analytic at every Xo
- of polynomials) are analytic at every analytic at every xo except possibly where the denominator is Zero

$$Ex: f(x) = \frac{x}{x^2 - 1} + function.$$

$$Ex: f(x) = \frac{x}{x^2 - 1} + every x_0 \neq \pm 1$$

$$x^2 - 1 = 0$$

$$x = \pm 1$$

For example, suppose
$$x_0 = 0$$
.
We have
$$\frac{x}{x^2-1} = \frac{x}{-1} \left[\frac{1}{1-x^2} \right]$$

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + u^4 + \dots$$

$$\frac{1}{1-u} = 1 + u + u + u + u + u + \dots$$

So,

$$\frac{x}{x^{2}-1} = -x-x^{3}-x^{5}-x^{7}-\dots$$

$$\frac{x^{2}-1}{x^{2}-1}$$
when $-1< x<1$
where converges diverges
$$\frac{1}{x^{2}-1}$$

Theorem

Consider either of the initial-value Problems:

Problems.

$$y'+a_0(x)y=b(x)$$
 $y(x_0)=y_0$

first
order

SO

$$y' + a_1(x)y' + a_0(x)y = b(x)$$

 $y'(x_0) = y'_0$
 $y(x_0) = y_0$

In either case, if the a_(x) and b(x) are all analytic at Xo, then there exists a power serier solution

 $y(x) = \sum_{n=0}^{\infty} a_n(x-x_0)^n$ Centered at Xo. Furthermose, the radius of Convergence r>0 for the power series of the solution y(x) is at least the Smallest radius of Lunuergence from amongst the power Secies of the a; (x) and b(x)

Ex: Suppose a_o(x) is analytic at Xo with radius of convergence is r=3. Suppose b(x) is analytic at Xo with radius of convergence $\Gamma = 800.$ Then, $\begin{cases} y' + a_o(x) y = b(x) \\ y(x_o) = y_o \end{cases}$ has a power series solution $\lambda(x) = \sum_{\infty}^{\infty} \alpha^{\nu}(x-x^{\nu})_{\nu}$

with radius of convergence at least r=3.

(minimum of 3 and 800)

from above