Math 2150-02 10/22/25

Topic 10 - Reduction of order

Suppose you know one solution y, to the homogeneous ODE

$$y'' + a_1(x)y' + a_0(x)y = 0$$
(*)

on an interval I where $y_i(x) \neq 0$ on I. Then one can find another solution using

$$y_2 = y_1 \left[\int \frac{-\int a_1(x) dx}{y_1^2} dx \right]$$

Furthermore, y, and yz will be the general solution to (x) will be the general solution to The series on I.

Ex: Consider
$$(x^2+1)y''-2xy'+2y=0$$
on $T=(0,\infty)$

Let's check if y,= x solves the equation. Plug it in to get: $(x^{2}+1)(0)-2x(1)+2(x)=0$ 7 7

So, y, selves the equation. Let's use our formula to find a second solution.

First divide the equation by (x2+1) to get: $\int_{-\infty}^{\infty} \frac{2x}{(x^{2}+1)} y'' + \frac{2}{(x^{2}+1)} y' = \frac{2x}{(x^{2}+1)}$ $\int_{-\infty}^{\infty} \frac{2x}{(x^{2}+1)} y'' + \frac{2}{(x^{2}+1)} y'' = \frac{2x}{(x^{2}+1)}$

$$= \chi \int \frac{-\int \left(\frac{-2x}{x^2+1}\right) dx}{\chi^2}$$

$$= \chi \left(\frac{\chi_{5} + 1}{2 \chi_{5} + 1} \right)$$

$$\int \frac{2x}{x^2+1} dx = \int \frac{1}{u} du$$

$$= \ln|u| = \ln|x^2+1| = \ln(x^2+1)$$

$$= \frac{1}{x^2+1} = \ln(x^2+1)$$

$$= \times \int \frac{\ln(x^2+1)}{2} dx$$

$$= x \int \frac{x^2 + 1}{x^2} dx$$

$$= x \int \frac{x^2 + 1}{x^2} dx$$

$$= x \int \left(\frac{x^2 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}}\right) dx$$

$$= x \int \left(\frac{x^2 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}}\right) dx$$

$$\frac{1}{e^{\ln(z)}} = z$$

$$= x \int (1+x^{-2}) dx$$

$$= x \left[x + \frac{x}{-1} \right]$$

$$= x \left(x - \frac{1}{x} \right)$$

$$= \times \left(\times - \frac{1}{\times} \right)$$

$$= \times \left(\times - \frac{1}{\times} \right)$$

Thus, the general solution to $(x^2+1)y''-2xy'+2y=0$ on $I = (0, \infty)$ is $y_h = c_1 y_1 + c_2 y_2$ $= C_1 \times + C_2 \left(\times^2 - 1 \right)$

Ex: Given that $y_1 = x^4$ is a solution to $x^2y'' - 7xy' + 16y = 0$ on $T = (0, \infty)$, find the general solution. Divide by x2 to get: $y'' - \frac{7}{x}y' + \frac{16}{x^2}y =$ $\frac{1}{\alpha_{i}(x)} = \frac{-7}{x}$ Ne get: $-\int a_1(x)dx$ $y_2 = y_1$ $-\int a_1(x)dx$ y_2 $= \chi \left(\frac{e^{-\int \left(-\frac{1}{\chi}\right)} d\chi}{\left(\frac{\chi}{\chi}\right)^2} \right)$

$$= x^{4} \int \frac{e^{7} \int x dx}{x^{8}} dx$$

$$= x^{4} \int \frac{e^{7 \ln |x|}}{x^{8}} dx$$

$$= x^{4} \int \frac{e^{1 \ln |x|}}{x^{8}} dx$$

$$C | n(2)$$

= $ln(2^{c})$

Topic 11-Review of power series Def: An infinite sum/series is a sum of the form $\sum_{\alpha_n = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 + \cdots}$ We started at n=0, but it doesn't have to. To define what this means We need partial sums. $S_N = \alpha_0 + \alpha_1 + \alpha_2 + \cdots + \alpha_N$

 $5, = a_0 + a_1$ $S_z = a_0 + a_1 + a_2$ $S_3 = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3$ and so on, If lim SN exists and N->0 equals L, then we say that $\underset{n=0}{\lesssim}$ and converges and write $\lesssim a_n = L$.

If lim SN does not exist NAR Say San diverges. Then we say n=0

Ex: Consider

$$\frac{2}{8} \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{0} + \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \cdots$$
 $\frac{1}{2} = \left(\frac{1}{2}\right)^{n} + \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} + \cdots$
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots$

Let's make a table of partial sums.

N
$$S_N$$

O 1
 $1 + \frac{1}{2} = 1.5$
 $2 + \frac{1}{2^2} = 1.75$
 $3 + \frac{1}{2} + \frac{1}{2^2} = 1.875$

4 $1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}=1.9375$

From Calculus you get

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 2$$

It comes from:

If -1 < r < l,

Then $\sum_{r=1}^{\infty} r^r = \frac{1}{1-r}$ Geometric sum