Math 2150-02 10/15/26

Topic 9-Variation of parameters

In topic 8 we learned a method to guess ye using a table. In this topic We find a formula fir yp using integrals. It will work in situations that topic 8 duesn't work such as y'' + y = +an(x)or when one doesn't have constant coefficients such as $\chi^2 y'' - 4 \times y' + 6y = \frac{1}{X}$

Derivation time!

Suppose you already have two linearly independent to solutions y, and yz to the homogeneous equation:

 $y' + a_1(x)y' + a_0(x)y = 0$ (*)

So the general solution
to (X) is $y_h = c_1 y_1 + c_2 y_2$.
We will use these to build
a particular solution y_p to

 $y'' + a_1(x)y' + a_0(x)y = b(x)$ (**)

To do +his, set

 $y_p = V_1 y_1 + V_2 y_2$ where V, and Vz are unknown Functions to be determined. We will now plug yp into (XX) and find two conditions we must solve to ensure that Je soldes (**). We have $y_p = V_1 y_1 + V_2 y_2$ $y_{p} = (v_{1}'y_{1} + v_{1}y_{1}') + (v_{2}'y_{2} + v_{2}y_{2}')$ $= (V_1 y_1' + V_2 y_2') + (V_1' y_1 + V_2' y_2)$ make condition that this is D

We will simplify by making

the condition that

$$V'_1 y_1 + V'_2 y_2 = 0$$

With condition ① satisfied we have.

 $Y_p = V_1 y_1 + V_2 y_2$
 $Y'_p = (V'_1 y'_1 + V'_1 y''_1) + (V'_2 y'_2 + V'_2 y''_2)$

Plug this all into $(**)$:

 $Y''_1 + a_1(x)y'_1 + a_2(x)y'_2 + a_3(x)y'_3 + a_4(x)y'_4$
 $Y''_1 + a_1(x)y'_1 + a_2(x)y'_2 + a_3(x)y'_3 + a_4(x)y'_4$
 $Y''_1 + a_1(x)[V_1 y_1'_1 + V'_2 y_2'_2 + V'_2 y_2'_3] + a_4(x)y'_4$

$$\begin{aligned} &+ a_0(x) \left[V_1 Y_1 + V_2 Y_2 \right] \\ &= b(x) \end{aligned}$$

$$= b(x)$$

This becomes:

$$V_{1}(y_{1}'' + a_{1}(x)y_{1}' + a_{0}(x)y_{1})$$

$$+ V_{2}(y_{2}'' + a_{1}(x)y_{2}' + a_{0}(x)y_{2})$$

$$+ (V_{1}'y_{1}' + V_{2}'y_{2}') = b(x)$$

We get 0's above because y, and yz solve y'+a,(x)y'+ao(x)y=0. The above simplifies to

Thus,
$$y_p = V_1 y_1 + V_2 y_2$$
 is a solution to $y'' + \alpha_1(x)y' + \alpha_0(x)y = b(x)$

if $V_1'y_1 + V_2'y_2 = 0$
 $V_1'y_1 + V_2'y_2' = b(x)$

The unknowns to solve for are V_1' , V_2' .

Let's solve for V_2' .

Calculating $y_1' * 0 - y_1 * 2$

+o get:

$$y'_1 y'_2 + y'_1 v'_2 y_2 = 0$$

 $- \left[y_1 y'_1 y'_1 + y_1 v'_2 y'_2 = y_1 \cdot b(x) \right]$
 $y'_1 v'_2 y'_2 - y_1 v'_2 y'_2 = -y_1 b(x)$
 So_0
 $V'_2 (y'_1 y'_2 - y'_1 y'_2) = -y_1 b(x)$
Multiply by -1 to get
 $V'_2 (y'_1 y'_2 - y'_1 y'_2) = y_1 b(x)$
 $W(y_1, y_2) = \left[y'_1 y'_2 \right]$
Thus,

$$V_{2}' = \frac{y_{1}b(x)}{W(y_{1}, y_{2})}$$

Hence,

$$V_2 = \int \frac{y_1 b(x)}{W(y_1, y_2)} dx$$

If you calculate

you will get

$$V_1 = \int \frac{W(\lambda^2)}{W(\lambda^2)} dx$$

Summary: Suppose you have two linearly independent solutions y, and yz to the homogeneous equation Then a particular solution y_p to $y'' + a_1(x)y' + a_0(x)y = b(x)$

yp= V, y, + Vz yz

where $V_1 = \int \frac{-y_2 b(x)}{W(y_1, y_2)} dx$, $V_2 = \int \frac{y_1 b(x)}{W(y_1, y_2)} dx$