Math 2150-01 9/17/25

Ex: Let's solve
$$y'' - 7y' + 10y = 24e^{x}$$
on $I = (-\infty, \infty)$

Step 1: Find the general
Solution Yn to

y'-7y'+10y = O (homogeneous)
equation

We need two linearly independent solutions. Let $f_1(x) = e^{2x}$, $f_2(x) = e^{5x}$.

Last time we showed that +, and +2 are linearly independent. Let's Shuw they both solve y'' - 7y' + 10y = 0. Let's check f, first. $f_1(x) = e^{2x}$ $f_1'(x) = 2e^{2x}$ $f_1''(x) = 4e^{2x}$ Plug it in to get $f''_1 - 7f'_1 + 10f_1 = 4e^{2x} - 7(2e^x) + 10(e^x)$ = 4e2x 14e2x + 10e2x =0It works!

Let's check
$$f_2(x) = e^{5x}$$
 $f_2(x) = e^{5x}$, $f_2'(x) = 5e^{5x}$, $f_2''(x) = 25e^{5x}$

Thus,

 $f_2'' - 7f_1' + 10f_1 = 25e^{5x} - 7(5e^{5x}) + 10(e^{5x})$
 $= 25e^{5x} - 35e^{5x} + 10e^{5x}$
 $= 25e^{5x} - 35e^{5x} + 10e^{5x}$
 $= 0$

So, f_2 is also a solution.

Since $f_1(x) = e^{2x}$ and $f_2(x) = e^{5x}$

We linearly independent

Solutions to

 $y'' - 7y' + 10y = 0$

We know that every solution to $y'' - 7y' + 10y = 0$ is of

the form $y_h = c_1 e^{2x} + c_2 e^{5x}$ Where $c_{1,1}c_2$ can be any constants.

Some example solutions to
$$y'' - 7y' + 10y = 0 \quad \text{are}$$

$$c_1 = 1, c_2 = 1: \quad y_h = e^{2x} + e^{5x}$$

$$c_1 = \frac{1}{2}, c_2 = \sqrt{2}: \quad y_h = \frac{1}{2}e^{2x} + \sqrt{2}e^{5x}$$

Step 2: Let's solve $y''-7y'+10y=24e^{x}$

$$\mathbb{T} = (-\infty, \infty)$$

We need a particular solution y, to y"-75 + 10 y= 24ex.

$$y_p = 6e^x$$

yp=6ex 4 in topic 8
We see how to find this
if it solves the ODE.

$$y_{p} = 6e^{x}$$
, $y'_{p} = 6e^{x}$, $y''_{p} = 6e^{x}$

We have

$$y_{\rho}'' - 7y_{\rho}' + 10y_{\rho} = 6e^{x} - 7(6e^{x}) + 10(6e^{x})$$

$$= 6e^{x} - 42e^{x} + 60e^{x}$$

$$=24e^{\times}$$

Jo, yp=6e solves y"-7y+10y=24e.

Then every solution of $y'' - 7y' + 10y = 24e^{x}$ is of the form: $y = y_h + y_p = c_1e^{x} + c_2e^{x} + 6e^{x}$

Where Ci, Cz are any constants

Ex: Let's find all the solutions to
$$x^2y'' - 4xy' + 6y = \frac{1}{x}$$
 on $T = (0, \infty)$

Step 1: Find two linearly independent solutions to
$$x^2y'' - 4xy' + 6y = 0$$

Let

 $f_1(x) = x^2$
 $f_2(x) = x$

Independent solutions to homogeneous equation

to show so to find these

Let's first verify
$$f_1$$
 and f_2
are linearly independent on I .

$$W(f_1,f_2) = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix} = \begin{vmatrix} x^2 & x^3 \\ 2x & 3x^3 \end{vmatrix}$$

$$= (x^2)(3x^2) - (x^3)(2x)$$

$$= x^4$$
Is $W(f_1,f_2) = x^4$ the zero
function on $I = (0, \infty)$?

They are not equal. Thus, $f_1(x) = x^2$ and $f_2(x) = x^3$ are linearly independent on I. show that fi and fe Let's now solutions to are both $x^2y'' - 4xy' + 6y = 0$ For f_1 we have: $f_1 = x^2$, $f_1' = 2x$, $f_1' = 2$ $x^{2}f'_{1}-4xf'_{1}+6f'_{1}$ $= x^{2}(2) - 4x(2x) + 6(x^{2})$ $=2x^2-8x^2+6x^2$

So,
$$f_1$$
 is a solution.
For f_2 we get: $f_2 = x^3$, $f_2' = 3x^2$, $f_2'' = 6x$
So:
 $x^2 f_2'' - 4x f_2' + 6f_2$
 $= x^2 (6x) - 4x (3x^2) + 6 (x^3)$
 $= 6x^3 - 12x^3 + 6x^3$
 $= 0$
So, f_2 is a solution.
Since $f_1(x) = x^2$, $f_2(x) = x^3$ are linearly independent solutions to linearly independent solutions of $x^2 y'' - 4x y' + 6y = 0$
on $x = (0, 10)$ every solution is of the form $x = (0, 10)$ every solution $x = (0, 10)$ every solution

Where Ci, Cz are any constants

Step 2: Now let's find a

Particular solution
$$y_p$$
 to

 $x^2y'' - 4xy' + 6y = \frac{1}{x}$

on $t = (0, \infty)$.

Let
$$y_p = \frac{1}{12x} = \frac{1}{12}x^{-1}$$
 to find this

Let's plug it in.

yp = \frac{1}{12} \times^{-1}

$$y_{\ell}' = -\frac{1}{12} \times^{-2}$$

$$y''_{p} = -\frac{1}{12}(-2x^{-3}) = \frac{1}{6}x^{-3}$$
Plug it in to get:
$$x^{2}y''_{p} - 4xy'_{p} + 6y_{p}$$

$$= x^{2}(\frac{1}{6}x^{-3}) - 4x(-\frac{1}{12}x^{-2}) + 6(\frac{1}{12}x^{-1})$$

$$= \frac{1}{6}x^{-1} + \frac{1}{3}x^{-1} + \frac{1}{2}x^{-1}$$

$$= (\frac{1+2+3}{6})x^{-1} = x^{-1} = \frac{1}{x}$$

Thus,
$$y_{p} = \frac{1}{12} \times^{-1} \text{ solves}$$

 $\frac{2}{x}y'' - 4xy' + 6y = \frac{1}{x}$

The general solution to $\chi y'' - 4 \chi y' + 6 y = \frac{1}{\chi}$ $y = C_1 \times + C_2 \times + \frac{1}{12} \times$ Where CIIC2 are any constants