Math 2150-01 9/15/25

Topic 6- Theory of second order linear equations

A second order linear equation is of the form $a_2(x)y' + a_1(x)y' + a_0(x)y = b(x)$

these terms
only have Xs and #s

To study these equations we need some preliminaries.

Def: Let I be an interval. Let f, and fz be defined on I. We say that f, and fz are linearly dependent on I if either $\frac{\partial}{\partial x} = c + (x) + (x) + (x) + (x) = c + (x) + (x$ Where c is a constant. If no such c exists then f, and fz are called linearly independent.

Ex:
$$I = (-\infty, \infty)$$
 $f_1(x) = x^2$
 $f_2(x) = 10x^2$
 $f_1(x) = x^2$
 $f_2(x) = 10x^2$
 $f_1(x) = x^2$
 $f_2(x) = 10x^2$

for all x in I .

Ex:
$$I = (-\infty, \infty)$$

Let $f_{1}(x) = x^{2}$, $f_{2}(x) = x^{3}$

Are f_{1} and f_{2} lin. dep.?

Suppose you could write $f_{1} = cf_{2}$ on I where c is a fixed constant. Then, $x^{2} = cx^{3}$ for all x in I . Then, when $x = 1$ we get $1 = c$. When $x = -1$ we get $-1 = c$.

But c is fixed. Thus you cant have $f_1 = cf_2$ on I. Similarly there is no c with $f_2 = cf_1$ Thus, F, and fz are linearly independent.

Now we give another way to test for lin. ind/dep. It's called the Wronskian. It's called the Wronskian. Named after Josef Wronski (1778-1853)

Theorem: Let I be an interval. Let fi, fz be differentiable on I. If the Wronskian $W(f_1,f_2) = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix} = f_1f_2 - f_2f_1'$ Notation

determinant $f_1 V f_2$ is a Laber Zero is not the Zero function on I, then f, and fz are linearly independent. 1 w(f, f2) That is, if there exists xo EI where W(f,,f2)(x0) = 0 then f, and fz are linearly independent

Ex: Let
$$I = (-\infty, \infty)$$
,
 $f_{1}(x) = e^{2x}$, $f_{2}(x) = e^{5x}$.
Let's show that f_{1} and f_{2}
are linearly independent on I .
We have
 $W(f_{1},f_{2}) = \begin{vmatrix} f_{1} & f_{2} \\ f_{1}' & f_{2}' \end{vmatrix}$
 $= \begin{vmatrix} e^{2x} & e^{5x} \\ 2e^{x} & 5e^{x} \end{vmatrix}$
 $= (e^{2x})(5e^{5x}) - (e^{5x})(2e^{x})$
 $= 5e^{7x} - 2e^{7x}$

 $=3e^{+x}$ This is not the Zero Function on I. For example at $x_0 = 0$, We get $W(f_1,f_2)(0) = 3e^{+(0)} = 3 + 0$ So, f, and fz are lin. ind.

For the remainder of topic 6 We will be learning the theory of solving

 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$

on some interval I where $a_2(x), a_1(x), a_2(x), b(x)$ are $a_2(x) \neq 0$ on I and $a_2(x) \neq 0$ on I.

We will assume these conditions for the remainder of the topic.

 $\frac{Ex'}{x^2y''-4xy'+6y} = \frac{1}{x}$ $T = (0, \infty) \leftarrow (0(x))$

Fact 1: $| If f_1(x)$ and $f_2(x)$ are linearly independent solutions to the homogeneous equation $\alpha_2(x)y'' + \alpha_1(x)y' + \alpha_0(x)y = 0$ (*) on I, then every when b(x)=0

solution to (*) on I is of the form $y_h = c_1 f_1(x) + c_2 f_2(x)$ (h for homogeneous) CII C2 are constants.

Fact 2: Suppose We can find a particular solution $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$ I, then every solution (**) on I is of the toin $y = c_1 f_1(x) + c_2 f_2(x) + y_p$ partialar solution to general solution Th to $\alpha_2(x)y'' + \alpha_1(x)y' + \alpha_0(x)y = 0$

Where C1, C2 are constants.