Math 2150-01 8/27/25

(Topic 1 continued...)

Ex: Show that
$$f(x) = c_1 e^2 + c_2 e^{-2x}$$
is a solution to
$$y'' - 4y = 0$$
on $T = (-\infty, \infty)$
Here c_1, c_2 can be any constants.

$$E_{X}$$
: $C_{1} = 4$, $C_{2} = -\frac{1}{2}$
 $f(x) = 4e^{2x} - \frac{1}{2}e^{-2x}$

Let's plug f into y"-4y=0 and show that it solves it.

In topic 7
We will
learn
how to
find this
, solution

We get

$$f(x) = c_1 e^{2x} + c_2 e^{2x}$$
 $f'(x) = 2c_1 e^{2x} - 2c_2 e^{2x}$
 $f''(x) = 4c_1 e^{2x} + 4c_2 e^{2x}$
 $T = (-\omega, \omega)$

Plug in $y = f(x)$, $y'' = f''(x)$
 $f''(x) - 4f(x)$
 $f''($

Ex: Find
$$C_{1}$$
, C_{2} where

$$f(x) = C_{1}e^{2x} + C_{2}e^{-2x}$$

$$f(x) = C_{1}e^{2x} + C_{2}e^{-2$$

We already know that
$$f(x) = c_1 e^{2x} + c_2 e^{-2x}$$
 solves $y'' - 4y = 0$. Let's make it also satisfy $f(x) = 1$ and $f'(0) = 0$.

We have $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ $f'(x) = 2c_1 e^{2x} - 2c_2 e^{-2x}$

$$1 = c_1 e^{2(0)} + c_2 e^{-2(0)}$$

$$0 = 2c_1 e^{2(0)} - 2c_2 e^{-2(0)}$$

$$0 = 2c_1 e^{2(0)} - 2c_2 e^{-2(0)}$$

$$| = c_1 + c_2$$
 $0 = 2c_1 - 2c_2$
 2

2) gives $C_1 = C_2$.

Plug this into () to get $1 = C_1 + C_1$.

So, $C_1 = \frac{1}{2}$.

Then, $C_2 = C_1 = \frac{1}{2}$.

Thus, $f(x) = \frac{1}{2} e^{2x} + \frac{1}{2} e^{2x}$

Thus, $f(x) = \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$ is the solution we want.

Topic 3- First order linear ODEs

We will give a method to solve $y' + \alpha(x)y = b(x)$ On any interval I where $\alpha(x)$ and b(x) are continuous, Since a(x) is continuous We can find an anti-derivative $A(x) = \int \alpha(x) dx.$

So, A'(x) = a(x). Now multiply y' + a(x)y = b(x)

by e A(x) to get: $e^{A(x)}y' + e^{A(x)}a(x)y = e^{A(x)}b(x)$ (this side becomes $(e^{A(x)}, y)' = e^{A(x)} \cdot A'(x) \cdot y + e^{A(x)} y$ $= e^{A(x)} \cdot a(x) y + e^{A(x)} y'$ We have $\left(e^{A(x)}, y\right) = e^{A(x)}b(x)$ Thus, by integrating both sides: $e^{A(x)}$, $y = \int e^{A(x)}b(x)dx$ Thus,

$$y = e^{-A(x)} \left[\int e^{A(x)} b(x) dx \right]$$

Since you can reverse the above steps this is the general solution to the ODE

$$y' + 2x y = x$$

$$a(x) = 2x$$

on
$$I = (-\infty, \infty)$$
.

Let
$$A(x) = \int 2x dx = x^2$$

Multiply $y' + 2xy = x$
by $e^{A(x)} = e^{x^2}$ to get

(no need for + C here we just need one antiderivative

$$e^{x^{2}}y'+e^{x^{2}}2xy=xe^{x^{2}}$$

$$+his is always$$

$$(e^{A(x)}.y)'$$
We get
$$(e^{x^{2}}.y)'=xe^{x}$$

$$So, e^{x^{2}}.y=\int xe^{x}dx$$

$$(x^{2}).y=\int xe^{x}dx$$

$$\int x e^{x^{2}} dx = \int \frac{1}{2} e^{y} dy$$

$$\int x = x^{2} dx = \int \frac{1}{2} e^{y} dy$$

$$= \frac{1}{2} e^{y} + C$$

$$\int \frac{1}{2} dy = x dx$$

$$= \frac{1}{2} e^{x^{2}} + C$$

Thus,
$$e^{x^{2}} \cdot y = \frac{1}{2}e^{x^{2}} + C$$

$$y = e^{-x^{2}}(\frac{1}{2}e^{x^{2}} + C)$$

$$(\frac{1}{2}e^{x^{2}})$$

$$y = \frac{1}{2}e^{-x^{2}} + Ce^{-x^{2}}$$

$$y = \frac{1}{2} + Ce^{-x^{2}}$$
So the general solution to
$$y' + 2xy = x$$
 is

y = \frac{1}{2} + Ce^{-x^2} Where C is

any constant

Ex: Let's solve

$$y' + \cos(x)y = \sin(x)\cos(x)$$

On $I = (-\infty, \infty)$.

Let
$$A(x) = \int cos(x)dx = sin(x)$$

Multiply the ODE above
by $e^{A(x)} = e^{sin(x)}$ to get:

 $e^{\sin(x)} / e^{\sin(x)} \cos(x) y = e^{\sin(x)} \sin(x) \cos(x)$ $= e^{\sin(x)} / e^{\sin(x)} \cos(x) y = e^{\sin(x)} \sin(x) \cos(x)$ $= e^{\sin(x)} / e^{\sin(x)} \cos(x) = e^{\sin(x)} \sin(x) \cos(x)$ $= e^{\sin(x)} / e^{\sin(x)} \cos(x) = e^{\sin(x)} \cos(x)$ $= e^{\sin(x)} / e^{\sin(x)} \cos(x)$

 $\left(e^{A(x)},y\right)^{\prime}$

 $\int_{e}^{sin(x)} sin(x) cos(x) dx = \int_{e}^{t} e^{t} \cdot t dt$ $\int dt = cos(x)dx$ = Stetat = tet-Setat u=t du=dt $dv=e^{t}dt$ $v=e^{t}$ Sudv= Uv- Svdu

$$= te^{t} - e^{t} + C$$

$$= sin(x)e^{sin(x)} - e^{sin(x)} + C$$

We get
$$e^{\sin(x)}, y = \sin(x)e^{\sin(x)} - e^{\sin(x)} + C$$

$$So,$$

$$y = e^{-\sin(x)} \left[\sin(x)e^{\sin(x)} - e^{\sin(x)} + C \right]$$