Lane-change assistance using

on-vehicle sensor data fusion

Team Members: Hagop Arabian, Daniel Gallegos, Roberto Garcia,
Gerardo Ibarra, David Neilsen, Patrick Emmanuel Sangalang,

Jonathan Santos, Deepanker Seth, Angel Tinajero, Xiao Hang Wang ‘\ MathWorkse
Faculty Advisor: Dr. Manveen Kaur
MathWorks Liaison: Sumit Tandon
Department of Computer Science
College of Engineering, Computer Science, and Technology
California State University, Los Angeles

ML SENSOR

e ——
~—

P

FUSION TEAM | ObjectiVGS]

[Background]

A vehicle operator must be aware of its position and
surroundings, which may include path markings, pedestrians,
and other vehicles.

e Sensor fusion is the merging of data, from a combination of sensors, which
provides a better understanding of the surrounding area.

The purpose of this project is to develop a sensor fusion

algorithm to assist in determining whether it is safe to change

e Types of sensors may include a camera, LIDAR, and Sonar. lanes. The objective is to create an algorithm which fuses

data captured from sensors to guide the future actions of the

e Compared to classic filtering techniques, previously used, machine learning vehicle and increasing lane change safety.
allows the system to learn from patterns to make predictions based on training
data.

| Datasets and Tools]|

e Vehicular technology can integrate sensor fusion to assist in creating safer
- - . _ . _ e These are the sources of Data that were used:
driving conditions by improving situational awareness. o The KITTI Vision Benchmark Suite

m Frame images from a mounted camera
e png images

. m Velodyne point cloud from Velodyne HDL-64E lidar.
[Algorithm] ¢ e ot s

o Matlab
m Data simulation

Algorithm YoMo (You Only Merge Once) Algorithm e The Following Algorithms were used to preprocess data:
o _ _ o Canny edge detection: Edge detection
Initialize variable video_frame C de cl ifier: Car detecti
Initialize data structure variable edge to store modified frame © ascaae C_a_SS' ler: . arde e_C lon
video_frames gets the individual video frame from the dataset o MPL classifier: Algorithm fusion

for frame in video_frames:
Apply ‘Canny edge detection’ algorithm to the frame

Append the resulting frame into edge e Tools and Libraries

end for o Flask: Back-end web framework

for frame in edge: o React: Front-end framework
Store third quadrant of image in third_quad variable o Sklearn: Machine learning algorithm training and testing
Store fourth quadrant of image in fourth_quad variable o Numpy: Data normalization and high-level mathematical

Initialize num_of cars variable)
Use “Cascade classifier” to count the number of cars detected in third_quad and add count in num_of cars variable functions
Use “Cascade classifier” to count the number of cars detected in fourth_quad and add it to the count in num_of cars variables Pandas: Data normalization

Opencyv: Object detection
o Python: Programing Language

O

end for

for vec in lidar_vectors:
vec_mag gets the magnitude (Math.sqrt(vec.x**2 + vec.y**2 + vec.z**2) of vec
Append values of vec_mag to the magnitude data structure

O

end for

result = Algorithm MLPClassifier is applied with parameters: [edge, num_ of cars, magnitude]

[Methods]

e The YoMo (You Only Merge Once) algorithm uses video frames along with LIDAR data as
inputs from the KITTI Vision Benchmark Suite.

e “Canny edge detection” is used to identify edges in the frames.

e Each video frame is divided into four quadrants and the algorithm focuses on the third and
fourth quadrants.

Sample of the conversion from video frame to an edge detection frame.

e Cascade classifier is used to identify the number of cars present in each of the selected

quadrants. Application Flow
Backend
AT B Creates API Path
. Data -Detect Edges o= ?S . 2 EroniEd
e Lidar sensor data is processed to compare the distances to all objects and calculate their _ - -Contains Video HTTP | -Local Webpage
S | -Video Frame -Cascade Classifier Frames with edges Response
proximity to the vehicle. -LIDAR Data FieEt Detetion HE® Of ienie i loquesttothe,
S e -MLPClassifier Algorithm T
I -Sends Video Frames
w/ edges and JSON
Data to the Frontend

e The resulting data are fused by the Multi-layer Perceptron Classifier, a machine learning
algorithm, to determine if it is safe for the vehicle to change lanes.

Application flowchart

