Horstmann Chapter 18

Big Java 4

Chapter 18 – Generic Classes

Chapter Goals

generic food

  • To understand the objective of generic programming
  • To implement generic classes and methods
  • To explain the execution of generic methods in the virtual machine
  • To describe the limitations of generic programming in Java

Generic Classes and Type Parameters

  • Generic programming: creation of programming constructs that can be used with many different types.
    • In Java, achieved with type parameters or with inheritance
    • Type parameter example: Java's ArrayList (e.g. ArrayList<String>)
    • Inheritance example: LinkedList implemented in Section 15.2 can store objects of any class
  • Generic class: has one or more type parameters.
  • A type parameter for ArrayList denotes the element type:
    public class ArrayList<E>
    {
       public ArrayList() { . . . }   
       public void add(E element) { . . . }
       . . .
    }

Type Parameter

  • Can be instantiated with class or interface type:
    ArrayList<BankAccount>
    ArrayList<Measurable>
  • Cannot use a primitive type as a type parameter:
    ArrayList<double> // Wrong!
  • Use corresponding wrapper class instead:
    ArrayList<Double>

Type Parameters

  • Supplied type replaces type variable in class interface.
  • Example: add in ArrayList<BankAccount> has type variable E replaced with BankAccount:
    public void add(BankAccount element)
  • Contrast with LinkedList.add from Chapter 15:
    public void add(Object element)

Type Parameters Increase Safety

  • Type parameters make generic code safer and easier to read:
    • Impossible to add a String into an ArrayList<BankAccount>
    • Can add a String into a non-generic LinkedList intended to hold bank accounts
    ArrayList<BankAccount> accounts1 = new ArrayList<BankAccount>(); 
    LinkedList accounts2 = new LinkedList(); // Should hold BankAccount objects 
    accounts1.add("my savings"); // Compile-time error
    accounts2.add("my savings"); // Not detected at compile time
    . . .
    BankAccount account = (BankAccount) accounts2.getFirst(); // Run-time error

Self Check 18.1

The standard library provides a class HashMap<K, V> with key type K and value type V. Declare a hash map that maps strings to integers.
  • Answer: HashMap<String, Integer>

Self Check 18.2

The binary search tree class in Chapter 16 is an example of generic programming because you can use it with any classes that implement the Comparable interface. Does it achieve genericity through inheritance or type variables?
  • Answer: It uses inheritance.

Self Check 18.3

Does the following code contain an error? If so, is it a compile-time or run-time error?
ArrayList<Integer> a = new ArrayList<Integer>();
String s = a.get(0);
  • Answer: This is a compile-time error. You cannot assign the Integer expression a.get(0) to a string.

Self Check 18.4

Does the following code contain an error? If so, is it a compile-time or run-time error?
ArrayList<Double> a = new ArrayList<Double>();
a.add(3);
  • Answer: This is a compile-time error. The compiler won't convert 3 to a Double. Remedy: Call a.add(3.0).

Self Check 18.5

Does the following code contain an error? If so, is it a compile-time or run-time error?
LinkedList a = new LinkedList();
a.addFirst("3.14");
double x = (Double) a.removeFirst();
  • Answer: This is a run-time error. a.removeFirst() yields a String that cannot be converted into a Double. Remedy: Call a.addFirst(3.14);

Implementing Generic Classes

  • Example: simple generic class that stores pairs of arbitrary objects such as:
    Pair<String, Integer> result
          = new Pair<String, Integer>("Harry Hacker", 1729);
  • Methods getFirst and getSecond retrieve first and second values of pair:
    String name = result.getFirst();
    Integer number = result.getSecond();
  • Example of use: return two values at the same time (method returns a Pair).
  • Generic Pair class requires two type parameters, one for each element type enclosed in angle brackets:
    public class Pair<T, S>

Implementing Generic Types

  • Use short uppercase names for type variables.
  • Examples
    Type Variable Name Meaning
    E Element type in a collection
    K Key type in a map
    V Value type in a map
    T General type
    S, U Additional general types
  • Place the type variables for a generic class after the class name, enclosed in angle brackets (< and >):
    public class Pair<T, S>
  • When you declare the instance variables and methods of the Pair class, use the variable T for the first element type and S for the second element type.
  • Use type parameters for the types of generic instance variables, method parameter variables, and return values.

Class Pair

public class Pair<T, S>
{
   private T first;
   private S second;
   
   public Pair(T firstElement, S secondElement)
   {
      first = firstElement; 
      second = secondElement;
   }
   public T getFirst() { return first; }
   public S getSecond() { return second; } 
}

Syntax 18.1 Declaring a Generic Class

syntax of a generic class

section_2/Pair.java

Your browser does not support the <object> tag.

section_2/PairDemo.java

Your browser does not support the <object> tag. Program Run:
  • Diana 
    Expected: Diana 
    1 
    Expected: 1 
    

Self Check 18.6

How would you use the generic Pair class to construct a pair of strings "Hello" and "World"?
  • Answer: new Pair<String, String>("Hello", "World")

Self Check 18.7

How would you use the generic Pair class to construct a pair containing "Hello" and 1729?
  • Answer: new Pair<String, Integer>(“Hello”, 1729)

Self Check 18.8

What is the difference between an ArrayList<Pair<String, Integer>> and a Pair<ArrayList<String>, Integer>?
  • Answer: An ArrayList<Pair<String, Integer>> contains multiple pairs, for example [(Tom, 1), (Harry, 3)]. A Pair<ArrayList<String>, Integer> contains a list of strings and a single integer, such as ([Tom, Harry], 1).

Self Check 18.9

Write a method roots with a Double parameter variable x that returns both the positive and negative square root of x if x ≥ 0 or null otherwise.
  • Answer:
    public static Pair<Double, Double> roots(Double x)
    {
       if (x >= 0)
       {
          double r = Math.sqrt(x);
          return new Pair<Double, Double>(r, -r);
       }
       else { return null; }
    }

Self Check 18.10

How would you implement a class Triple that collects three values of arbitrary types?
  • Answer: You have three type parameters: Triple<T, S, U>. Add an instance variable U third, a constructor argument for initializing it, and a method U getThird() for returning it.

Generic Methods

  • Generic method: method with a type parameter.
  • Can be declared inside non-generic class .
  • Example: Declare a method that can print an array of any type:
    public class ArrayUtil 
    { 
       /** 
          Prints all elements in an array. 
          @param a the array to print 
       */ 
       public <T> static void print(T[] a) 
       {  
          . . . 
       }
       . . .
    }

Generic Methods

  • Often easier to see how to implement a generic method by starting with a concrete example.
  • Example: print the elements in an array of strings:
    public class ArrayUtil 
    { 
       public static void print(String[] a) 
       {  
          for (String e : a) 
          {
             System.out.print(e + " "); 
          }
          System.out.println(); 
       } 
       . . . 
    }

Generic Methods

  • In order to make the method into a generic method:
    • Replace String with a type parameter, say E, to denote the element type
    • Add the type parameters between the method's modifiers and return type
public static <E> void print(E[] a) 
{  
   for (E e : a) 
      System.out.print(e + " "); 
   System.out.println(); 
}

Generic Methods

  • When calling a generic method, you need not instantiate the type variables:
    Rectangle[] rectangles = . . .;
    ArrayUtil.print(rectangles);
  • The compiler deduces that E is Rectangle .
  • You can also define generic methods that are not static.
  • You can even have generic methods in generic classes.
  • Cannot replace type variables with primitive types.
    • Example: cannot use the generic print method to print an array of type int[]

Syntax 18.2 Declaring a Generic Method

syntax of generic methods

Self Check 18.11

Exactly what does the generic print method print when you pass an array of BankAccount objects containing two bank accounts with zero balances?
  • Answer: The output depends on the definition of the toString method in the BankAccount class.

Self Check 18.12

Is the getFirst method of the Pair class a generic method?
  • Answer: No – the method has no type parameters. It is an ordinary method in a generic class.

Self Check 18.13

Consider this fill method:
public static <T> void fill(List<T> lst, T value)
{
    for (int i = 0; i < lst.size(); i++) { lst.set(i, value); }
}
If you have an array list ArrayList <String> a = new ArrayList<String>(10); how do you fill it with ten "*"?
  • Answer: fill(a, "*");

Self Check 18.14

What happens if you pass 42 instead of "*" to the fill method?
  • Answer: You get a compile-time error. An integer cannot be converted to a string.

Self Check 18.15

Consider this fill method:
public static <T> fill(T[] arr, T value)
{
   for (int i = 0; i < arr.length; i++) { arr[i] = value; }
}
What happens when you execute the following statements?
String[] a = new String[10];
fill(a, 42);
  • Answer: You get a run-time error. Unfortunately, the call compiles, with T = Object. This choice is justified because a String[] array is convertible to an Object[] array, and 42 becomes new Integer(42), which is convertible to an Object. But when the program tries to store an Integer in the String[] array, an exception is thrown.

Constraining Type Variables

a "restricted area" sign

 

 

You can place restrictions on the type parameters of generic classes and methods.

Constraining Type Variables

  • Type variables can be constrained with bounds.
  • A generic method, average, needs to be able to measure the objects.
  • Measurable interface from Section 10.1:
    public interface Measurable
    {
       double getMeasure();
    }
  • We can constrain the type of the elements to those that implement the Measurable type:
    public static <E extends Measurable> double average(ArrayList<E> objects)
  • This means, “E or one of its superclasses extends or implements Measurable”.
    • We say that E is a subtype of the Measurable type.

Constraining Type Variables

  • Completed average method:
    public static <E extends Measurable> double average(ArrayList<E> objects)
    {
       if (objects.size() == 0) { return 0; }
       double sum = 0;
       for (E obj : objects)
       {
          sum = sum + obj.getMeasure();
       }
       return sum / objects.size();
    }
  • In the call obj.getMeasure()
    • It is legal to apply the getMeasure method to obj
    • obj has type E, and E is a subtype of Measurable.

Constraining Type Variables - Comparable Interface

  • Comparable interface is a generic type.
  • The type parameter specifies the type of the parameter variable of the compareTo method:
    public interface Comparable<T>
    {
       int compareTo(T other);
    }
  • String class implements Comparable<String>
    • Strings can be compared to other Strings
    • But not with objects of a different class

Constraining Type Variables - Comparable Interface

  • When writing a generic method min to find the smallest element in an array list,
    • Require that type parameter E implements Comparable<E>
    public static <E extends Comparable<E>> E min(ArrayList<E> objects)
    {
       E smallest = objects.get(0);
       for (int i = 1; i < objects.size(); i++)
       {
          E obj = objects.get(i);
          if (obj.compareTo(smallest) < 0)
          {
             smallest = obj;
          }
       }
       return smallest;
    }
         
  • Because of the type constraint, obj must have a method of this form:
     int compareTo(E other) 
    • So the the following call is valid
    obj.compareTo(smallest)
  • Constraining Type Variables

    • Very occasionally, you need to supply two or more type bounds:
      <E extends Comparable<E> & Cloneable>
    • extends, when applied to type parameters, actually means extends or implements
    • The bounds can be either classes or interfaces
    • Type parameters can be replaced with a class or interface type

    Self Check 18.16

    How would you constrain the type parameter for a generic BinarySearchTree class?
    • Answer:
      public class BinarySearchTree<E extends Comparable<E>>
      or, if you read Special Topic 18.1,
      public class BinarySearchTree<E extends Comparable<? super E>>

    Self Check 18.17

    Modify the min method to compute the minimum of an array list of elements that implements the Measurable interface.
    • Answer:
      public static <E extends Measurable> E min(ArrayList<E> objects)
      {
         E smallest = objects.get(0);
         for (int i = 1; i < objects.size(); i++)
         {
            E obj = objects.get(i);
            if (obj.getMeasure() < smallest.getMeasure())
            {
               smallest = obj;
            }
         }
         return smallest;
      }

    Self Check 18.18

    Could we have declared the min method of Self Check 17 without type parameters, like this?
    public static Measurable min(ArrayList<Measurable> a)
    • Answer: No. As described in Common Error 18.1, you cannot convert an ArrayList<BankAccount> to an ArrayList<Measurable>, even if BankAccount implements Measurable.

    Self Check 18.19

    Could we have declared the min method of Self Check 17 without type parameters for arrays, like this?
    public static Measurable min(Measurable[] a)
    • Answer: Yes, but this method would not be as useful. Suppose accounts is an array of BankAccount objects. With this method, min(accounts) would return a result of type Measurable, whereas the generic method yields a BankAccount.

    Self Check 18.20

    How would you implement the generic average method for arrays?
    • Answer:
      public static <E extends Measurable> double average(E[] objects)
      {
         if (objects.length == 0) { return 0; }
         double sum = 0;
         for (E obj : objects)
         {
            sum = sum + obj.getMeasure();
         }
         return sum / objects.length;
      }

    Self Check 18.21

    Is it necessary to use a generic average method for arrays of measurable objects?
    • Answer: No. You can define
      public static double average(Measurable[] objects)
      {
         if (objects.length == 0) { return 0; }
         double sum = 0;
         for (Measurable obj : objects)
         {
            sum = sum + obj.getMeasure();
         }
         return sum / objects.length;
      }
      For example, if BankAccount implements Measurable, a BankAccount[] array is convertible to a Measurable[] array. Contrast with Self Check 19, where the return type was a generic type. Here, the return type is double, and there is no need for using generic types.

    Genericity and Inheritance

    • One can not assign a subclass list to a superclass list.
    • ArrayList<SavingsAccount> is not a subclass of ArrayList<BankAccount>.
      • Even though SavingsAccount is a subclass of BankAccount
      ArrayList<SavingsAccount> savingsAccounts = new ArrayList<SavingsAccount>();
      ArrayList<BankAccount> bankAccounts = savingsAccounts; // Not legal - compile-time error
  • However, you can do the equivalent thing with array:s
    SavingsAccount[] savingsAccounts = new SavingsAccount[10];
    BankAccount bankAccounts = savingsAccounts; // Legal
  • But this assignment will give a run-time error:
    BankAccount harrysChecking = new CheckingAccount();
    bankAccounts[0] = harrysChecking; // Throws ArrayStoreException
  • Wildcard Types

    Name Syntax Meaning
    Wildcard with lower bound ? extends B Any subtype of B
    Wildcard with upper bound ? super B Any supertype of B
    Unbounded wildcard ? Any type

    Wildcard Types

    • Wildcard types are used to formulate subtle constraints on type parameters.
    • A wildcard type is a type that can remain unknown.
    • A method in a LinkedList class to add all elements of LinkedList other:
      • other can be of any subclass of E
      public void addAll(LinkedList<? extends E> other)
      {   
         ListIterator<E> iter = other.listIterator();
         while (iter.hasNext()) add(iter.next());
      }
  • This declaration is too restrictive for the min method:
    public static <E extends Comparable<E>> E min(E[] a)
  • Type parameter of the Comparable interface should be any supertype of the array list’s element type:
    public static <E extends Comparable<? super E>> E min(E[] a)
  • Wildcard Types

    • A method in the Collections class which uses an unbounded wildcard:
      static void reverse(List<?> list)
    • You can think of that declaration as a shorthand for:
      static void <T> reverse(List<T> list)

    Type Erasure

    girl erasing chalk board

     

     

    In the Java virtual machine, generic types are erased.

    Type Erasure

    • The virtual machine erases type parameters, replacing them with their bounds or Objects.
    • For example, generic class Pair<T, S> turns into the following raw class:
      public class Pair
      {
         private Object first;
         private Object second;
         
         public Pair(Object firstElement, Object secondElement)
         {
            first = firstElement;
            second = secondElement;
         }
         public Object getFirst() { return first; }
         public Object getSecond() { return second; }
      }

    Type Erasure

    • Same process is applied to generic methods.
    • In this generic method:
      public static <E extends Measurable> E min(E[] objects)
      {
         E smallest = objects[0];
         for (int i = 1; i < objects.length; i++)
         {
            E obj = objects[i];
            if (obj.getMeasure() < smallest.getMeasure())
            {
               smallest = obj;
            }
         }
         return smallest;
      }
    • The type parameter Is replaced with its bound Measurable:
      public static Measurable min(Measurable[] objects)
      {
         Measurable smallest = objects[0];
         for (int i = 1; i < objects.length; i++)
         {
            Measurable obj = objects[i];
            if (obj.getMeasure() < smallest.getMeasure())
            {
               smallest = obj;
            }
         }
         return smallest;
      }

    Type Erasure

    • Knowing about type erasure helps you understand limitations of Java generics.
    • You cannot construct new objects of a generic type.
    • For example, trying to fill an array with copies of default objects would be wrong:
      public static <E> void fillWithDefaults(E[] a) 
      { 
         for (int i = 0; i < a.length; i++) 
            a[i] = new E(); // ERROR 
      }
    • Type erasure yields:
      public static void fillWithDefaults(Object[] a) 
      { 
         for (int i = 0; i < a.length; i++) 
            a[i] = new Object(); // Not useful 
      }

    Type Erasure

    • To solve this particular problem, you can supply a default object:
      public static <E> void fillWithDefaults(E[] a, E defaultValue) 
      { 
         for (int i = 0; i < a.length; i++) 
            a[i] = defaultValue; 
      }

    Type Erasure

    • You cannot construct an array of a generic type:
      public class Stack<E> 
      { 
         private E[] elements; 
         . . . 
         public Stack() 
         { 
            elements = new E[MAX_SIZE]; // Error 
         } 
      }
    • Because the array construction expression new E[] would be erased to new Object[].
    • One remedy is to use an array list instead:
      public class Stack<E> 
      { 
         private ArrayList<E> elements; 
         . . . 
         public Stack() 
         { 
            elements = new ArrayList<E>(); // Ok 
         } 
         . . . 
      }

    Type Erasure

    • Another solution is to use an array of objects and cast when reading elements from the array:
      public class Stack<E>
      {
         private Object[] elements;
         private int currentSize;
         . . .
         public Stack()
         {
            elements = new Object[MAX_SIZE]; // Ok
         }
         . . .
         public E pop()
         {
            size--;
            return (E) elements[currentSize];
         }
      }
    • The cast (E) generates a warning because it cannot be checked at compile time

    Self Check 18.22

    Suppose we want to eliminate the type bound in the min method of Section 18.5, by declaring the parameter variable as an array of Comparable<E> objects. Why doesn't this work?
    • Answer:
      public static <E> Comparable<E> min(Comparable<E>[] objects)
      is an error. You cannot have an array of a generic type.

    Self Check 18.23

    What is the erasure of the print method in Section 18.3?
    • Answer:
      public static void print(Object[] a)
      {
         for (Object e : a)
         {
            System.out.print(e + " ");
         }
         System.out.println();
      }

    Self Check 18.24

    Could the Stack example be implemented as follows?
    public class Stack<E> 
    { 
       private E[] elements; 
       . . . 
       public Stack() 
       { 
          elements = (E[]) new Object[MAX_SIZE]; 
       } 
       . . . 
    }
    • Answer: This code compiles (with a warning), but it is a poor technique. In the future, if type erasure no longer happens, the code will be wrong. The cast from Object[] to String[] will cause a class cast exception.

    Self Check 18.25

    The ArrayList<E> class has a method:
    Object[] toArray()
    Why doesn't the method return an E[]?
    • Answer: Internally, ArrayList uses an Object[] array. Because of type erasure, it can’t make an E[] array. The best it can do is make a copy of its internal Object[] array.

    Self Check 18.26

    The ArrayList<E> class has a second method:
    E[] toArray(E[] a)
    Why can this method return an array of type E[]? (Hint: Special Topic 18.2.)
    • Answer: It can use reflection to discover the element type of the parameter a, and then construct another array with that element type (or just call the Arrays.copyOf method).

    Self Check 18.27

    Why can't the method
    static <T> T[] copyOf(T[] original, int newLength)
    be implemented without reflection?
    • Answer: The method needs to construct a new array of type T. However, that is not possible in Java without reflection.