Multi-colouring the Mycielskian of Graphs

Wensong Lin * Daphne Der-Fen Liu † Xuding Zhu ‡

December 1, 2016

Abstract

A k-fold colouring of a graph is a function that assigns to each vertex a set of k colours, so that the colour sets assigned to adjacent vertices are disjoint. The k-th chromatic number of a graph G, denoted by $\chi_k(G)$, is the minimum total number of colours used in a k-fold colouring of G. Let $\mu(G)$ denote the Mycielskian of G. For any positive integer k, it holds that $\chi_k(G) + 1 \leq \chi_k(\mu(G)) \leq \chi_k(G) + k$ [5]. Although both bounds are attainable, it was proved in [7] that if $k \geq 2$ and $\chi_k(G) \leq 3k - 2$, then the upper bound can be reduced by 1, i.e., $\chi_k(\mu(G)) \leq \chi_k(G) + k - 1$. We conjecture that for any $n \geq 3k - 1$, there is a graph G with $\chi_k(G) = n$ and $\chi_k(\mu(G)) = n + k$. This is equivalent to conjecturing that the equality $\chi_k(\mu(K(n,k))) = n + k$ holds for Kneser graphs $K(n,k)$ with $n \geq 3k - 1$. We confirm this conjecture for $k = 2, 3$, or when n is a multiple of k or $n \geq 3k^2/\ln k$. Moreover, we determine the values of $\chi_k(\mu(C_{2q+1}))$ for $1 \leq k \leq q$.

*Department of Mathematics, Southeast University, Nanjing 210096, P.R. China. Supported in part by NSFC under grant 10671033. Email: wslin@seu.edu.cn.

†Corresponding Author. Department of Mathematics, California State University, Los Angeles, CA 90032, USA. Supported in part by the National Science Foundation under grant DMS 0302456. Email: dliu@calstatela.edu.

‡Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, and National Center for Theoretical Sciences, Taiwan. Supported in part by the National Science Council under grant NSC95-2115-M-110-013-MY3. Email: zhu@math.nsysu.edu.tw.
1 Introduction

In search of graphs with large chromatic number but small clique size, Mycielski [6] introduced the following construction: Let G be a graph with vertex set V and edge set E. Let \overline{V} be a copy of V, $\overline{V} = \{ \overline{x} : x \in V \}$, and let u be a new vertex. The Mycielskian of G, denoted by $\mu(G)$, is the graph with vertex set $V \cup \overline{V} \cup \{ u \}$ and edge set $E' = E \cup \{ x\overline{y} : xy \in E \} \cup \{ u\overline{x} : \overline{x} \in \overline{V} \}$. The vertex u is called the root of $\mu(G)$; and for any $x \in V$, \overline{x} is called the twin of x. For a graph G, denote $\chi(G)$ and $\omega(G)$, respectively, the chromatic number and the clique size of G. It is straightforward to verify that for any graph G with $\omega(G) \geq 2$, we have $\omega(\mu(G)) = \omega(G)$ and $\chi(\mu(G)) = \chi(G) + 1$. Hence, one can obtain triangle free graphs with arbitrarily large chromatic number, by repeatedly applying the Mycielski construction to K_2.

Multiple-colouring of graphs was introduced by Stahl [10], and has been studied extensively in the literature. For any positive integers n and k, we denote by $[n]$ the set $\{0, 1, \ldots, n-1\}$ and $\binom{[n]}{k}$ the set of all k-subsets of $[n]$. A k-fold n-colouring of a graph G is a mapping, $f : V \rightarrow \binom{[n]}{k}$, such that for any edge xy of G, $f(x) \cap f(y) = \emptyset$. In other words, a k-fold colouring assigns to each vertex a set of k colours, where no colour is assigned to any adjacent vertices. Moreover, if all the colours assigned are from a set of n colours, then it is a k-fold n-colouring. The k-th chromatic number of G is defined as

$$\chi_k(G) = \min \{ n : G \text{ admits a } k \text{-fold } n\text{-colouring} \}.$$

The k-fold colouring is an extension of conventional vertex colouring. A 1-fold n-colouring of G is simply a proper n-colouring of G, so $\chi_1(G) = \chi(G)$.

It is known [8] and easy to see that for any $k, k' \geq 1$, $\chi_{k+k'}(G) \leq \chi_k(G) + \chi_{k'}(G)$. This implies $\frac{\chi_k(G)}{k} \leq \chi(G)$. The fractional chromatic number of G is
defined by
\[
\chi_f(G) = \inf \{ \frac{\chi_k(G)}{k} : k = 1, 2, \ldots \}.
\]

Thus \(\chi_f(G) \leq \chi(G) \) (cf. [8]).

For a graph \(G \), it is natural to ask the following two questions:

1. What is the relation between the fractional chromatic number of \(G \) and the fractional chromatic number of the Mycielskian of \(G \)?

2. What is the relation between the \(k \)-th chromatic number of \(G \) and the \(k \)-th chromatic number of the Mycielskian of \(G \)?

The first question was answered by Larsen, Propp and Ullman [4]. It turned out that the fractional chromatic number of \(\mu(G) \) is determined by the fractional chromatic number of \(G \): For any graph \(G \),

\[
\chi_f(\mu(G)) = \chi_f(G) + \frac{1}{\chi_f(G)}.
\]

The second question is largely open. Contrary to the answer of the first question in the above equality, the \(k \)-th chromatic number of \(\mu(G) \) is not determined by \(\chi_k(G) \). There are graphs \(G \) and \(G' \) with \(\chi_k(G) = \chi_k(G') \) but \(\chi_k(\mu(G)) \neq \chi_k(\mu(G')) \). So it is impossible to express \(\chi_k(\mu(G)) \) in terms of \(\chi_k(G) \). Hence, we aim at establishing sharp bounds for \(\chi_k(\mu(G)) \) in terms of \(\chi_k(G) \). Obviously, for any graph \(G \) and any positive integer \(k \), \(\chi_k(\mu(G)) \leq \chi_k(G) + k \). Combining this with a lower bound established in [5] we have:

\[
\chi_k(G) + 1 \leq \chi_k(\mu(G)) \leq \chi_k(G) + k. \quad (1)
\]

Moreover, it is proved in [5] that for any \(k \) both the upper and the lower bounds in (1) can be attained. On the other hand, it is proved in [7] that if \(\chi_k(G) \) is relatively small compared to \(k \), then the upper bound can be reduced.
Theorem 1 [7] If \(k \geq 2 \) and \(\chi_k(G) = n \leq 3k-2 \), then \(\chi_k(\mu(G)) \leq n+k-1 \).

In this article, we prove that for graphs \(G \) with \(\chi_k(G) \) relatively large compared to \(k \), then the upper bound in (1) cannot be improved. We conjecture that the condition \(n \leq 3k-2 \) in Theorem 1 is sharp.

Conjecture 1 If \(n \geq 3k-1 \), then there is a graph \(G \) with \(\chi_k(G) = n \) and \(\chi_k(\mu(G)) = n+k \).

A homomorphism from a graph \(G \) to a graph \(G' \) is a mapping \(f : V(G) \rightarrow V(G') \) such that \(f(x)f(y) \in E(G') \) whenever \(xy \in E(G) \). If \(f \) is a homomorphism from \(G \) to \(G' \) and \(c' \) is a \(k \)-fold \(n \)-colouring for \(G' \), then the mapping defined as \(c(x) = c'(f(x)) \) is a \(k \)-fold \(n \)-colouring of \(G \). Thus \(\chi_k(G) \leq \chi_k(G') \).

For positive integers \(n \geq 2k \), the Kneser graph \(K(n,k) \) has vertex set \(\binom{[n]}{k} \) in which \(x \sim y \) if \(x \cap y = \emptyset \). It follows from the definition that a graph \(G \) has a \(k \)-fold \(n \)-colouring if and only if there is a homomorphism from \(G \) to \(K(n,k) \). In particular, if \(k' = qk \) for some integer \(q \), then it is easy to show that \(\chi_{k'}(K(n,k)) = qn \). If \(k' \) is not a multiple of \(k \), then determining \(\chi_{k'}(K(n,k)) \) is usually a difficult problem. The well-known Kneser-Lovász Theorem [3] gives the answer to the case for \(k' = 1 \): \(\chi(K(n,k)) = n-2k+2 \). For \(k' \geq 2 \), the values of \(\chi_{k'}(K(n,k)) \) are still widely open.

Notice that, a homomorphism from \(G \) to \(G' \) induces a homomorphism from \(\mu(G) \) to \(\mu(G') \). Hence, we have

\[
\max\{\chi_k(\mu(G)) : \chi_k(G) = n\} = \chi_k(\mu(K(n,k))).
\]

Therefore, Conjecture 1 is equivalent to

Conjecture 2 If \(n \geq 3k-1 \), then \(\chi_k(\mu(K(n,k))) = n+k \).

In this paper, we confirm Conjecture 2 for the following cases:
• n is a multiple of k (Section 2),
• $n \geq 3k^2/\ln k$ (Section 2),
• $k \leq 3$ (Section 3).

It was proved in [5] that the lower bound in (1) is sharp for complete graphs K_n with $k \leq n$. That is, if $k \leq n$, then $\chi_k(K_n) = \chi_k(K_n) + 1 = kn + 1$. In Section 4, we generalize this result to circular complete graphs $K_{p/q}$ (Corollary 10). Also included in Section 4 are complete solutions of the k-th chromatic number for the Mycielskian of odd cycles C_{2q+1} with $k \leq q$.

2 Kneser graphs with large order

In this section, we prove for any k, if $n = qk$ for some integer $q \geq 3$ or $n \geq 3k^2/\ln k$, then $\chi_k(\mu(K(n,k))) = n + k$.

In the following, the vertex set of $K(n,k)$ is denoted by V. The Mycielskian $\mu(K(n,k))$ has the vertex set $V \cup \overline{V} \cup \{u\}$. For two integers $a \leq b$, let $[a,b]$ denote the set of integers i with $a \leq i \leq b$.

Lemma 2 For any positive integer k, $\chi_k(\mu(K(3k,k))) = 4k$.

Proof. Suppose to the contrary, $\chi_k(\mu(K(3k,k))) \leq 4k - 1$. Let c be a k-fold colouring of $\mu(K(3k,k))$ using colours from the set $[0, 4k - 2]$. Without loss of generality, assume $c(u) = [0, k - 1]$. Let $X = \{x \in V : c(x) \cap c(u) = \emptyset\}$. Then X is an independent set in $K(3k,k)$; for if $v, w \in X$ and $v \sim w$, then v, w have a common neighbor, say \overline{x}, in \overline{V}, implying that $c(v), c(w), c(\overline{x})$ and $c(u)$ are pairwise disjoint. So $|c(u)| + |c(\overline{x})| + |c(v)| + |c(w)| = 4k$, a contradiction. Hence, the vertices of V can be partitioned into $k + 1$ independent sets: X and $A_i = \{v \in V : i = \min c(v)\}$, $i = 0, 1, \ldots, k - 1$, contradicting the fact that $\chi(K(3k,k)) = k + 2$.

\[\blacksquare \]
Lemma 3 For any \(n \geq 3k - 1 \),

\[
\chi_k(\mu(K(n,k))) \geq \chi_k(\mu(K(n-k,k))) + k.
\]

Proof. Suppose \(\chi_k(\mu(K(n,k))) = m \). Let \(c \) be a \(k \)-fold colouring for \(\mu(K(n,k)) \) using colours from \([0, m-1]\). Assume \(c(u) = [0, k-1] \). Since \(\chi(K(n,k)) = n - 2k + 2 > k \), there exists some vertex \(v \) in \(V \) with \(c(v) \cap [0, k-1] = \emptyset \). Without loss of generality, assume \(c(v) = [k, 2k-1] \). Let \(N \) be the set of neighbors of \(v \) in \(V \), and let \(N' = \{ w \in V : w \in N \} \).

Then the subgraph of \(\mu(K(n,k)) \) induced by \(N \cup N' \cup \{ u \} \) is isomorphic to \(\mu(K(n-k,k)) \). Denote this subgraph by \(G' \). The colouring \(c \) restricted to \(G' \) is a \(k \)-fold colouring using colours from \([0, m-1]\) \(\setminus [k, 2k-1] \), which implies \(\chi_k(G') = \chi_k(\mu(K(n-k,k))) \leq m - k \).

\[\square\]

Corollary 4 For any integers \(q \geq 3 \) and \(k \geq 1 \), \(\chi_k(\mu(K(qk,k))) = (q+1)k \).

Next we prove that \(\chi_k(\mu(K(n,k))) = n+k \) holds for \(n \geq 3k^2/\ln k \). It was proved by Hilton and Milner [2] that if \(X \) is an independent set of \(K(n,k) \) and \(\cap_{x \in X} x = \emptyset \), then \(|X| \leq 1 + \binom{n-1}{k-1} - \binom{n-k-1}{k-1} \).

For any positive integer \(k \), let \(\phi(k) \) be the minimum \(n \) such that

\[
\frac{n ((n-k-1)(n-k-2) \ldots (n-2k+1) - (k-1)!)}{k(n-1)(n-2) \ldots (n-k+1)} > 1. \tag{2}
\]

Theorem 5 Let \(n \) and \(k \) be integers with \(n \geq \phi(k) \). Then

\[
\chi_k(\mu(K(n-1,k))) \leq \chi_k(\mu(K(n,k))) - 1.
\]

Proof. Let \(t = \chi_k(\mu(K(n,k))) \) and let \(c \) be a \(k \)-fold \(t \)-colouring of \(\mu(K(n,k)) \) using colours from \([0, t-1]\). Assume \(c(u) = [0, k-1] \). For \(i \in [0, t-1] \), let \(S_i = \{ x \in V : i \in c(x) \} \). Then \(\sum_{i=0}^{t-1} |S_i| = k\binom{n}{k} \), since each vertex appears in exactly \(k \) of the \(S_i \)'s.
Since \(t \leq n + k \), by a straightforward calculation, inequality (2) implies that
\[
k\left(\begin{array}{c}n \\ k\end{array}\right) > (t - k) \left(1 + \left(\begin{array}{c}n - 1 \\ k - 1\end{array}\right) - \left(\begin{array}{c}n - k - 1 \\ k - 1\end{array}\right)\right) + k\left(\begin{array}{c}n - 1 \\ k - 1\end{array}\right).
\]
Therefore, at least \(k + 1 \) of the \(S_i \)'s satisfy the following:
\[
|S_i| > 1 + \left(\begin{array}{c}n - 1 \\ k - 1\end{array}\right) - \left(\begin{array}{c}n - k - 1 \\ k - 1\end{array}\right).
\]
Hence there exists \(i^* \not\in [0, k - 1] \) with \(|S_{i^*}| > 1 + \left(\begin{array}{c}n - 1 \\ k - 1\end{array}\right) - \left(\begin{array}{c}n - k - 1 \\ k - 1\end{array}\right) \). This implies \(\cap_{x \in S_{i^*}} x \neq \emptyset \). Note that the intersection \(\cap_{x \in S_{i^*}} x \) contains only one integer.

For otherwise, assume \(a \in W = \cap_{x \in S_{i^*}} x \) and \(W \setminus \{a\} \neq \emptyset \). Let \(x' \) be a vertex containing \(a \), and \(y' \) be a vertex such that \(y' \cap W = W \setminus \{a\} \) and \(y' \cap x' \neq \emptyset \). Then \(S' = S_{i^*} \cup \{x', y'\} \) is an independent set with \(|S'| > 1 + \left(\begin{array}{c}n - 1 \\ k - 1\end{array}\right) - \left(\begin{array}{c}n - k - 1 \\ k - 1\end{array}\right) \) and \(\cap_{x \in S'} x = \emptyset \), a contradiction.

Assume \(\cap_{x \in S_{i^*}} x = \{a\} \). If \(y \in K(n, k) \) and \(y \) intersects every \(x \in S_{i^*} \), then \(a \in y \). For otherwise, \(S' = S_{i^*} \cup \{y\} \) is an independent set with \(S_{i^*} \subset S' \) and \(\cap_{x \in S'} x = \emptyset \), a contradiction. We conclude that for any \(y \in K(n, k) \), if \(a \not\in y \), then none of \(S_{i^*} \cup \{y\} \) and \(S_{i^*} \cup \{7\} \) is an independent set in \(\mu(K(n, k)) \), which implies that \(i^* \not\in c(y) \) and \(i^* \not\in c(7) \).

By letting \(a = n \), the restriction of \(c \) to the subgraph \(\mu(K(n - 1, k)) \) gives a \(k \)-fold \((t - 1)\)-colouring of \(\mu(K(n - 1, k)) \).

Corollary 6 For any \(n \geq \max\{2k + 1, N\} \), \(\chi_k(\mu(K(n, k))) = n + k \), where \(N \) is defined as follows. If \(\phi(k) = qk + 1 \), then \(N = qk \); otherwise, \(N \) is the smallest integer such that \(N \) is a multiple of \(k \) and \(N \leq \phi(k) \).

Proof. By Corollary 4, \(\chi_k(\mu(K(N, k))) = N + k \). By Theorem 5,
\[
\chi_k(\mu(K(n, k))) \geq (n - N) + \chi_k(\mu(K(N, k))) = n + k.
\]
Although it might be hard to find a simple formula for the function $\phi(k)$ defined in the above, one can easily learn that $\phi(k)$ has order $k^2/\ln k$.

Corollary 7 If $k \geq 4$ and $n \geq 3k^2/\ln k$, then $\chi_k(\mu(K(n,k))) = n + k$.

Proof. Assume $n \geq 3k^2/\ln k$. Then
\[
\frac{n[(n-k-1)(n-k-2)\ldots(n-2k+1)-(k-1)!]}{k(n-1)(n-2)\ldots(n-k+1)} > \frac{(n-1)(n-k-1)(n-k-2)\ldots(n-2k+1)}{k(n-1)(n-2)\ldots(n-k+1)}
\]
\[
> \frac{n-1}{k} \left(\frac{n-2k}{n-k} \right)^{k-1}
\]
\[
> \frac{n-1}{k} e^{-k(k-1)/(n-2k)}
\]
\[
> \frac{2k}{\ln k} e^{-k(k-1)(\ln k)/2k^2}
\]
\[
> \frac{2k}{\sqrt{k \ln k}} > 1.
\]

Therefore, $n \geq N$ for the N defined in Corollary 6, so the result follows. ■

In Corollary 7, $3k^2/\ln k$ can be replaced by $(1 + \epsilon)k^2/\ln k$ for any $\epsilon > 0$, provided that k is large enough.

3 **$K(n, 2)$ and $K(n, 3)$**

In this section, we confirm Conjecture 2 for $k \leq 3$. The case $k = 1$ was proved by Mycielski. For $k = 2, 3$, the value of $\phi(k)$ defined in (2) in Section 2 can be easily determined: $\phi(2) = 6$ and $\phi(3) = 10$. Thus to prove Conjecture 2 for $k = 2, 3$, by Corollary 6 it suffices to show that $\chi_2(\mu(K(5,2))) = 7$ and $\chi_3(K(8,3)) = 11$. As it was proved in [5] that $\chi_2(\mu(K(5,2))) = 7$, the case $k = 2$ is settled.
In the following, we confirm the case $k = 3$.

Theorem 8 $\chi_3(\mu(K(8, 3))) = 11$.

Proof. As $\chi_k(K(8, 3)) \leq 11$, it suffices to show $\chi_k(K(8, 3)) > 10$. Assume to the contrary, there exists a 3-fold 10-colouring c of $\mu(K(8, 3))$, using colours from the set $\{a_0, a_1, \ldots, a_9\}$. For simplicity, we denote each vertex in V by (ijk), where $i, j, k \in \{0, 1, 2, \ldots, 7\}$, and its twin by (\overline{ijk}); and for $s \leq t$, we denote the set of colours $\{a_s, a_{s+1}, \ldots, a_t\}$ by $a[s, t]$.

Assume $c(u) = a[0, 2]$. Let $X = \{x \in V : c(x) \cap c(u) = \emptyset\}$. For $x \in X$ and $i \not\in x$, let $M_i(x) = \{v \in V : v \setminus x = \{i\}\}$. For a set A of vertices, let $c\langle A \rangle = \bigcup_{x \in A} c(x)$.

Claim 1 For any $x \in X$, there is at most one integer $i \not\in x$ for which $c\langle M_i(x) \rangle \not\subseteq c(x) \cup c(u)$.

Proof. Assume the claim is not true. Without loss of generality, assume that $x = (012)$, $c(x) = a[3, 5]$ and $c(M_3(x))$, $c(M_7(x)) \not\subseteq c(x) \cup c(u) = a[0, 5]$. We may assume $a_6 \in c(M_3(x))$ and $a_t \in c(M_7(x))$ for some $t \in [6, 9]$. For any $i, j, k \in [4, 7]$, $(ijk) \sim x, u, M_3(x)$. Hence $c(\overline{ijk}) = a[7, 9]$. Similarly, for any $i, j, k \in [3, 6]$, $c(\overline{ijk}) = a[6, 9] - \{a_t\}$. As $c(456) = a[7, 9] = a[6, 9] - \{a_t\}$, we conclude that $t = 6$.

Let $W := \{(034), (157), (026), (134), (257)\}$. Every vertex in W is adjacent to some (ijk), with $i, j, k \in [4, 7]$ or $i, j, k \in [3, 6]$. Hence, $c(W) \subseteq a[0, 6]$. This is impossible, as W induces a C_5 while it is known [10] that $\chi_3(C_5) = 8$.

Claim 2 Let $x, y \in X$. If $x \neq y$, then $c(x) \neq c(y)$. Moreover, if $x \cap y \neq \emptyset$, then $|c(x) \cap c(y)| = 2$.

9
Proof. Let \(x, y \in X\), \(x \neq y\). Assume to the contrary, \(c(x) = c(y)\). Then \(x \cap y \neq \emptyset\). Assume \(|x \cap y| = 2\), say \(x = (012), y = (013) \in X\) and \(c(y) = c(x) = a[3, 5]\). Then \(c(245), c(367) \subseteq a[6, 9]\), implying \(|c(245) \cap a[0, 2]| \geq 2\) and \(|c(367) \cap a[0, 2]| \geq 2\). This is impossible as \((367) \sim (245)\).

Next, assume \(|x \cap y| = 1\), say \(x = (012), y = (234)\) and \(c(x) = c(y) = a[3, 5]\). By Claim 1, there exists \(i \in \{5, 6, 7\}\), say \(i = 5\), \(c(M_i(x)) \subseteq c(x) \cup c(u) = a[0, 5]\). Hence \(c(015) = a[0, 2]\) (as \(015 \sim (234)\)). Then \(c(346), c(015) \subseteq a[6, 9]\), a contradiction, as \(345 \sim 015\). Hence, \(c(x) \neq c(y)\).

To prove the moreover part, assume \(x \cap y \neq \emptyset\). Then there is some \(z \in V\) with \(z \sim x, y\). Thus \(c(x) \cup c(y) \cup c(u)\) is disjoint from \(c(\pi)\). This implies \(|c(x) \cap c(y)| = 2\).

In the remainder of the proof, we use Schrijver graphs. For \(n \geq k\), the Schrijver graph, denoted by \(S(n, k)\), is a subgraph of \(K(n, k)\) induced by the vertices that do not contain any pair of consecutive integers in the cyclic order of \([n]\). Schrijver [9] proved that \(\chi(K(n, k)) = \chi(S(n, k))\) and \(S(n, k)\) is vertex critical.

Denote the subgraph of \(K(8, 3)\) induced by \(V - X\) by \(K(8, 3) \setminus X\). Then \(K(8, 3) \setminus X\) has a 3-vertex-colouring \(f\), defined by \(f(v) = \min\{c(v)\}\). Hence, \(S(8, 3)\) can not be a subgraph of \(K(8, 3) \setminus X\). In what follows, we frequently use the fact that if, for some ordering of \(\{0, 1, \ldots, 7\}\), each vertex \(x \in X\) contains a pair of cyclically consecutive integers in \(\{0, 1, \ldots, 7\}\), then \(K(8, 3) \setminus X\) contains \(S(8, 3)\) as a subgraph, which is a contradiction.

Claim 3 For any \(x, y \in X\), \(x \cap y \neq \emptyset\).

Proof. Assume to the contrary, \(x = (012), y = (567) \in X\). Suppose there is a vertex \(z \in X \setminus \{x, y\}\) which intersects both \(x, y\). By Claim 2, \(|c(z) \cap c(x)| = 2\) and \(|c(z) \cap c(y)| = 2\), which is a contradiction, as \(c(x) \cap c(y) = \emptyset\). Therefore,
any \(z \in X \setminus \{x, y\} \) is either disjoint from \(x \) or disjoint from \(y \). We partition \(X \) into two sets, \(A_x \) and \(A_y \), that include vertices disjoint from \(x \) or from \(y \), respectively.

Next we claim \(A_x = \{y\} \) or \(A_y = \{x\} \). For each \(z \in A_y \), applying the above discussion on \(x \) and \(y \) to \(z \) and \(y \), one can show that for any \(z' \in A_x \), \(z \cap z' = \emptyset \). Hence, if \(A_y - \{x\} \neq \emptyset \) and \(A_x - \{y\} \neq \emptyset \), then we may assume \(z \subseteq [0, 3] \) for all \(z \in A_y \), and \(z' \subseteq [4, 7] \) for all \(z' \in A_x \). This implies that every vertex of \(X \) contains two consecutive integers. Thus, \(A_x = \{y\} \) or \(A_y = \{x\} \).

Assume \(A_x = \{y\} \). If \((024) \notin X\), then clearly every vertex of \(X \) contains two consecutive integers. Suppose \(z_1 = (024) \in X \). If \((023) \notin X\), then by exchanging 3 and 4 in the cyclic ordering, every vertex in \(X \) contains two consecutive integers. Assume \(z_2 = (023) \in X \). By Claim 1, for some \(i \in \{1, 2\} \), \(c(z_i) \subseteq c(x) \cup c(u) \), and hence \(c(x) = c(z_i) \) (since \(z_i \in X \)), contradicting Claim 2.

It follows from Claims 2 and 3 that for any distinct \(x, y \in X \), \(|c(x) \cap c(y)| = 2 \). There are at most five 3-subsets of \(a[3, 9] \) that pairwise have two elements in common. Thus \(|X| \leq 5 \). By Claim 3, it is straightforward to verify that there exists an ordering of \(\{0, 1, 2, \ldots, 7\} \) such that each \(x \in X \) contains a pair of cyclic consecutive integers. The details are omitted, as they are a bit tedious yet apparent.

4 Circular cliques and odd cycles

For any positive integers \(p \geq 2q \), the circular complete graph (or circular clique) \(K_{p/q} \) has vertex set \([p]\) in which \(ij \) is an edge if and only if \(q \leq |i - j| \leq p - q \). Circular cliques play an essential role in the study of circular chromatic number of graphs (cf. [12, 13]). A homomorphism from \(G \) to \(K_{p/q} \) is also called a \((p,q)\)-colouring of \(G \). The circular chromatic number of \(G \) is
defined as

\[\chi_c(G) = \inf\{p/q : G \text{ has a } (p,q)\text{-colouring}\}. \]

It is known [12] that for any graph \(G \), \(\chi_f(G) \leq \chi_c(G) \). Moreover, a result in [1] implies that if \(\chi_f(G) = \chi_c(G) \) then for any positive integer \(k \),

\[\chi_k(G) = \lceil k\chi_f(G) \rceil. \]

As \(\chi_c(K_{p/q}) = \chi_f(K_{p/q}) = p/q \), we have

\[\chi_k(K_{p/q}) = \lceil kp/q \rceil. \]

Let \(m = \lceil kp/q \rceil \). Indeed, a \(k \)-fold \(m \)-colouring \(c \) of \(K_{p/q} \), using colours \(a_0, a_1, \ldots, a_{m-1} \), can be easily constructed as follows. For \(j = 0, 1, \ldots, m-1 \), assign colour \(a_j \) to vertices \(jq, jq+1, \ldots, (j+1)q-1 \). Here the calculations are modulo \(p \). Observe that \(c \) is a \(k \)-fold colouring for \(K_{p/q} \), because each colour \(a_j \) is assigned to an independent set of \(K_{p/q} \), and the union \(\bigcup_{j=0}^{m-1} \{jq, jq+1, \ldots, (j+1)q-1\} = [0, mq-1] \) is an interval of \(mq \) consecutive integers. As \(mq \geq kp \), for each integer \(i \), there are at least \(k \) integers \(t \in [0, mq-1] \) that are congruent to \(i \) modulo \(p \), i.e., there are at least \(k \) colours assigned to each vertex \(i \) of \(K_{p/q} \). (Here, for convenience, we modify the definition of a \(k \)-fold colouring to be a colouring which assigns to each vertex a set of at least \(k \) colours.)

Now we extend the above \(k \)-fold colouring \(c \) of \(K_{p/q} \) to a \(k \)-fold colouring for \(\mu(K_{p/q}) \) by assigning at least \(k \) colours to each vertex in \(V \cup \{u\} \). Let \(S = a[m-k, m-1] \) and let \(c(u) = S \). For \(i \in V(K_{p/q}) \), let \(g(\overline{i}) = c(i) \setminus S \). Then \(|g(\overline{i})| \) is equal to the number of integers in the interval \([0, (m-k)q-1]\) that are congruent to \(i \) modulo \(p \). Hence \(|g(\overline{i})| \geq [(m-k)q/p] \). Let \(b = k - \lceil (m-k)q/p \rceil \), and let \(c(\overline{i}) = g(\overline{i}) \cup \{a_m, a_{m+1}, \ldots, a_{m+b-1}\} \). Then \(c \) is a \(k \)-fold \((m+b) \)-colouring of \(\mu(K_{p/q}) \), implying \(\chi_k(\mu(K_{p/q})) \leq m+b \).
Theorem 9 Suppose p, q, k are positive integers with $p \geq 2q$. Then

$$\lceil kp/q + kq/p \rceil \leq \chi_k(\mu(K_{p/q})) \leq \lceil kp/q \rceil + \lceil kq/p \rceil.$$

Proof. The lower bound follows from the result that $\chi_f(\mu(K_{p/q})) = \chi_f(K_{p/q}) + \frac{1}{\chi_f(K_{p/q})} = \frac{p}{q} + \frac{q}{p}$. For the upper bound, we have shown in the previous paragraph that $\chi_k(\mu(K_{p/q})) \leq m + b$, where $m = \lceil kq/p \rceil$ and $b = k - \lceil (m - k)q/p \rceil$. By letting $m = (kp + s)/q$, easy calculation shows that $b = \lceil (kq - s)/p \rceil \leq \lceil kq/p \rceil$.

It was proved in [5] that $\chi_k(\mu(K_n)) = \chi_k(K_n) + 1 = kn + 1$ holds for $k \leq n$. By Theorem 9, this result can be generalized to circular cliques.

Corollary 10 If $k \leq p/q$, then $\chi_k(\mu(K_{p/q})) = \chi_k(K_{p/q}) + 1$.

Proof. As $\chi_k(\mu(G)) \geq \chi_k(G) + 1$ holds for any graph G, it suffices to note that when $k \leq p/q$, Theorem 9 implies that $\chi_k(\mu(K_{p/q})) \leq \chi_k(K_{p/q}) + 1$.

Corollary 11 If $k = tq$ is a multiple of q, then $\chi_k(\mu(K_{p/q})) = tp + \lceil kq/p \rceil$; if $k = sp$ is a multiple of p, then $\chi_k(\mu(K_{p/q})) = sq + \lceil kp/q \rceil$.

Corollary 11 implies that for any integer s with $1 \leq s \leq \lceil k/2 \rceil$, there is a graph G with $\chi_k(\mu(G)) = \chi_k(G) + s$.

If $p = 2q + 1$, then $K_{p/q}$ is the odd cycle C_{2q+1}. Assume $k \leq q$. By Theorem 9,

$$2k + \lceil (k + 1)/2 \rceil \leq \chi_k(\mu(C_{2q+1})) \leq 2k + \lceil (k + 2)/2 \rceil.$$

In particular, if k is even, then $\chi_k(\mu(C_{2q+1})) = 5k/2 + 1$; if k is odd, then $\chi_k(\mu(C_{2q+1})) \in \{2k + \frac{k+1}{2}, 2k + \frac{k+3}{2}\}$. It was proved in [5] that $\chi_k(\mu(C_{2q+1})) = 2k + \frac{k+3}{2}$ if k is odd and $k \leq q \leq \frac{3k-1}{2}$. In the next theorem, we completely determine the value of $\chi_k(\mu(C_{2q+1}))$ for $3 \leq k \leq q$.

13
Theorem 12 Let k be an odd integer, $k \geq 3$. Then
\[
\chi_k(\mu(C_{2q+1})) = \begin{cases}
2k + \frac{k+3}{2}, & \text{if } k \leq q \leq \frac{3k+3}{2}; \\
2k + \frac{k+1}{2}, & \text{if } q \geq \frac{3k+5}{2}.
\end{cases}
\]

Proof. Denote $V(C_{2q+1}) = \{v_0, v_1, \ldots, v_{2q}\}$, where $v_i \sim v_{i+1}$. Throughout the proof, all the subindices are taken modulo $2q + 1$.

We first consider the case $k \leq q \leq \frac{3k+3}{2}$. Assume to the contrary, \(\chi_k(\mu(C_{2q+1})) = 2k + \frac{k+1}{2} \). Let c be a k-fold colouring of $\mu(C_{2q+1})$ using colours from the set $a[0, 2k + \frac{k-1}{2}]$. Without loss of generality, assume $c(u) = a[0, k - 1]$.

Denote by X the colour set $a[k, 2k + \frac{k-1}{2}]$. For $i = 0, 1, \ldots, 2q$, let $W_i = c(v_i)$, $X_i = W_i \cap X$, and $Y_i = W_i \cap a[0, k - 1]$. Then $W_i = Y_i \cup X_i$ and $|X_i| + |Y_i| = k$. For each i, since $c(v_{i-1}) \subseteq X$ and $(c(v_{i-1}) \cup c(v_i)) \cap c(v_i) = \emptyset$, we have $|X_{i-1} \cup X_{i+1}| \leq |X| - k = (k + 1)/2$. As $|W_i \cup W_{i+1}| = 2k$, we have $|X_i \cup X_{i+1}| \geq k$. Hence, for each i, $\frac{k-1}{2} \leq |X_i| \leq \frac{k+1}{2}$.

Partition $V = \{v_0, v_1, \ldots, v_{2q}\}$ into the following two sets:

\[
\begin{align*}
A_1 &= \{v_i \in V : |X_i| = \frac{k-1}{2}\}, \\
A_2 &= \{v_i \in V : |X_i| = \frac{k+1}{2}\}.
\end{align*}
\]

Observation A. All the following hold for every $i \in [0, 2q]$:

1. If $v_i \in A_1$, then $v_{i-1}, v_{i+1} \in A_2$.

2. If $v_i, v_{i+2} \in A_2$, then $X_i = X_{i+2}$; if $v_i, v_{i+2} \in A_1$, then $|X_i \setminus X_{i+2}| \leq 1$ and $|X_{i+2} \setminus X_i| \leq 1$.

3. Assume $v_i \in A_1$ for some i. If $v_{i+2} \in A_2$ (or $v_{i-2} \in A_2$, respectively), then $X_i \subseteq X_{i+2}$ (or $X_i \subseteq X_{i-2}$, respectively).

For each i, as $|X_i| + |Y_i| = k$, one has $\frac{k-1}{2} \leq |Y_i| \leq \frac{k+1}{2}$. Similar to the above discussion on X_i's, we have:

Observation B. The following hold for all $i \in [0, 2q]$:
1. If \(v_i, v_{i+2} \in A_1 \), then \(Y_i = Y_{i+2} \).

2. Assume \(v_i \in A_1 \) for some \(i \). If \(v_{i+2} \in A_2 \) (or \(v_{i-2} \in A_2 \), respectively), then \(Y_{i+2} \subseteq Y_i \) (or \(Y_{i-2} \subseteq Y_i \), respectively).

3. Assume \(v_i, v_{i+2} \in A_2 \) for some \(i \). If \(v_{i+1} \in A_1 \), then \(Y_{i+1} \subseteq Y_i \); if \(v_{i+1} \in A_2 \), then \(|Y_{i+2} \setminus Y_i| \leq 1 \) and \(|Y_i \setminus Y_{i+2}| \leq 1 \).

By Observation A (1), there exists some \(i \) such that \(v_i, v_{i+1} \in A_2 \). Without loss of generality, assume \(v_0, v_1 \in A_2 \).

Claim 1. \(|A_1| = k + 2 \). Moreover, all the following hold:

1. \(\bigcup_{i=0}^{2q} X_i = X_0 \cup X_1 \cup \{w^*\} \) for some \(w^* \not\in X_0 \cup X_1 \).

2. For each \(v_i \in A_1 \), \(i \in [0, 2q] \), there exists some \(x \in X_{i-2} \setminus X_i \). In addition, if \(x \neq w^* \), then \(x \in X_0 \) if \(i \) is even; and \(x \in X_1 \) if \(i \) is odd.

3. For each \(x \in X_0 \cup X_1 \cup \{w^*\} \) there exists a unique \(i \in [0, 2q] \) such that \(x \in X_i \setminus X_{i+2} \). In addition,
 - if \(x = w^* \), then \(x \not\in X_{i+2} \cup X_{i+3} \cup \ldots \cup X_{2q} \);
 - if \(x \in X_0 \), then \(i \) is even and \(x \not\in X_{i+2} \cup X_{i+4} \cup \ldots \cup X_{2q} \); and
 - if \(x \in X_1 \), then \(i \) is odd and \(x \not\in X_{i+2} \cup X_{i+4} \cup \ldots \cup X_{2q-1} \).

Proof. Consider the sequence \((X_0, X_2, \ldots, X_{2q}, X_1) \). Because \(X_0 \cap X_1 = \emptyset \), for each \(x \in X_0 \), there exists some even number \(i \in [0, 2q] \) such that \(x \in X_i \setminus X_{i+2} \). By Observation A, \(X_i \setminus X_{i+2} = \{x\} \) and \(v_{i+2} \in A_1 \). Since \(|X_0| = \frac{k+1}{2} \), we conclude that there exist \(\frac{k+1}{2} \) even integers \(i \in [0, 2q] \) with \(|X_i \setminus X_{i+2}| = 1 \) and \(v_{i+2} \in A_1 \). Similarly, by considering the sequence \((X_1, X_3, \ldots, X_{2q-1}, X_0) \), there exist \(\frac{k+1}{2} \) odd integers \(i \in [0, 2q] \) with \(|X_i \setminus X_{i+2}| = 1 \) and \(v_{i+2} \in A_1 \). Hence, \(|A_1| \geq k + 1 \).
Let i^* be the smallest nonnegative integer such that $|X_{i^*+2} \setminus X_{i^*}| = 1$. Note, by the above discussion, i^* exists. Let $X_{i^*+2} \setminus X_{i^*} = \{w^*\}$. It can be seen that $w^* \not\in X_0 \cup X_1$. By the same argument as in the previous paragraph (using either the even or the odd sequence depending on the parity of i^*), there exists some $i \geq i^*$ such that $w^* \in X_i \setminus X_{i+2}$ and $v_{i+2} \in A_1$. Moreover, this i is different from the i's observed in the previous paragraph. So, $|A_1| \geq k + 2$.

By a similar discussion applied to Y_0 and Y_1 one can show that there are at least k integers i such that $|Y_i \setminus Y_{i+2}| = 1$.

Combining all the above discussion, to complete the proof (including the moreover part) it is enough to show $|A_1| \leq k+2$. Consider a sequence $v_i, v_{i+1}, \ldots, v_{i+s}, v_{i+s+1}$ with $v_i, v_{i+s+1} \in A_1$ and $v_{i+1}, \ldots, v_{i+s} \in A_2$. Then $s > 0$ holds, and by Observation B, there are at most $s – 1$ integers j in $[i, i+s]$ such that $|Y_j \setminus Y_{j+2}| = 1$. Hence, there are at most $|A_2| – |A_1|$ integers i in $[0, 2q]$ with $|Y_i \setminus Y_{i+2}| = 1$. This implies, by the previous paragraph, $|A_2| – |A_1| \geq k$. Recall, $|A_2| + |A_1| = 2q + 1 \leq 3k + 4$. Therefore, $|A_1| \leq k + 2$. **Claim 2.** For any $v_i, v_j \in A_1$ with $i \neq j$, we have $|i – j| \geq 3$.

Proof. Suppose the claim fails. Without loss of generality, by Observation A (1), we may assume there exists some $i \in [0, 2q]$ such that $v_{i-1}, v_{i+1} \in A_1$ and $v_{i-3}, v_{i-2}, v_i, v_{i+2} \in A_2$. By Observation A (2), $X_{i-2} = X_i = X_{i+2}$. Assume i is odd. (The proof for i even is symmetric.) By Claim 1 (2), there exist $w_1 \in X_{i-3} \setminus X_{i-1}$ and $w_2 \in X_{i-1} \setminus X_{i+1}$, where $\{w_1, w_2\} \subseteq X_0 \cup \{w^*\}$. From $w_1 \in X_{i-3}$ and $w_2 \in X_{i-1}$, it follows $w_1, w_2 \not\in X_{i-2}$. By Claim 1 (3), $w_1, w_2 \not\in X_{i+1} \cup X_{i+3}$. Hence,

$$X_{i+2} \cup X_{i+1} = X_i \cup X_{i+1} = (X_0 \cup X_1 \cup \{w^*\}) \setminus \{w_1, w_2\}.$$

If $v_{i+3} \in A_2$, by Observation A (3), we have $X_{i+1} \subseteq X_{i+3}$, implying w_1 or w_2 is in $X_{i+3} \setminus X_{i+1}$, a contradiction. Hence, $v_{i+3} \in A_1$. Again by Claim 1 (2),
w₁ or w₂ must be in Xᵢ₊₃ \ Xᵢ₊₁, a contradiction.

By Claims 1 and 2, we have 2q + 1 = |A₁| + |A₂| ≥ 3(k + 2) = 3k + 6, contradicting q ≤ \(\frac{3k+3}{2} \). This completes the proof for q ≤ \(\frac{3k+3}{2} \).

Now consider q ≥ \(\frac{3k+5}{2} \). Observe that if q′ ≤ q, then µ(C₂q₊₁) admits a homomorphism to µ(C₂q′₊₁), which implies that \(\chi_k(µ(C₂q₊₁)) \leq \chi_k(µ(C₂q′₊₁)) \). Thus to prove the case q ≥ \(\frac{3k+5}{2} \), it suffices to give a k-fold colouring \(f \) for µ(C₃k₊6) using colours from the set \([0, 2k + \frac{k-1}{2}]\). We give such a colouring \(f \) below by using the above proof. For instance, combining Claims 1 and 2, we have 2 \(\{a, a + 1, a + 2, a + 4, \ldots, b - 2, b\} \) (mod 3k + 6). For 0 ≤ j ≤ 2k + 1, define:

\[
V[j] = \begin{cases}
< 5 + 6j, 2 + 6j >, & j = 0, 1, \ldots, \frac{k-3}{2}; \\
< 8 + 6(j - \frac{k-1}{2}), 5 + 6(j - \frac{k-1}{2}) >, & j = \frac{k-1}{2}, \ldots, k - 2; \\
< 2, 3k - 1 > \cup \{3k + 2, 3k + 5\}, & j = k - 1; \\
< 7 + 6(j - k), 6(j - k) >, & j = k, k + 1, \ldots, k + \frac{k-1}{2}; \\
< 10 + 6(j - k - \frac{k+1}{2}), 3 + 6(j - k - \frac{k+1}{2}) >, & j = k + \frac{k+1}{2}, \ldots, 2k; \\
< 4, 3k + 3 >, & j = 2k + 1.
\end{cases}
\]

Define \(f \) on C₃k₊6 by j ∈ f(vᵢ) whenever i ∈ V[j]. Observe, for each i, |f(vᵢ₋₁) ∪ f(vᵢ₊₁)) ∩ [k, 2k + 1]| ≤ \(\frac{k+1}{2} \).

Finally, let f(\(\overline{v_i} \)) be any k colours from \([k, 2k + \frac{k-1}{2}]\) \(\setminus \) (f(vᵢ₋₁) ∪ f(vᵢ₊₁)). It is straightforward to verify that \(f \) is a k-fold \((2k + \frac{k+1}{2}) \)-colouring for µ(C₃k₊6). We shall leave the details to the reader. This completes the proof of Theorem 12. ■
References

