On \((d, 1)\)-Total Numbers of Graphs

Ko-Wei Lih*

Institute of Mathematics, Academia Sinica, Nankang, Taipei 11529, Taiwan

Daphne Der-Fen Liu¹

Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032, USA

Weifan Wang²

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

Abstract

A \((d, 1)\)-total labelling of a graph \(G\) assigns integers to the vertices and edges of \(G\) such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least \(d\). The span of a \((d, 1)\)-total labelling is the maximum difference between two labels. The \((d, 1)\)-total number, denoted \(\lambda_T^{(d)}(G)\), is defined to be the least span among all \((d, 1)\)-total labellings of \(G\). We prove new upper bounds for \(\lambda_T^{(d)}(G)\), compute some \(\lambda_T^{(d)}(K_{m,n})\) for complete bipartite graphs \(K_{m,n}\), and completely determine all \(\lambda_T^{(d)}(K_{m,n})\) for \(d = 1, 2, 3\). We also propose a conjecture on an upper bound for \(\lambda_T^{(d)}(G)\) in terms of the chromatic number and the chromatic index of \(G\).

Key words: channel assignment, \(L(2, 1)\)-labelling, \((d, 1)\)-total labelling, chromatic number, chromatic index

* Corresponding author.

Email addresses: makwlih@sinica.edu.tw (Ko-Wei Lih),
dliu@calstatela.edu (Daphne Der-Fen Liu), wwf@zjnu.cn (Weifan Wang).

¹ Supported in part by the NSF under grant DMS 0302456.

² Supported in part by the NSFC under grant 10771197.
1 Introduction

Let d be a positive integer and $G(V, E)$ be a finite graph without loops or multiple edges. We always assume that G has at least one edge without explicitly saying so. A $(d, 1)$-total labelling of G is an integer-valued function f defined on the set $V(G) \cup E(G)$ such that

$$|f(x) - f(y)| \begin{cases} 1 & \text{if vertices } x \text{ and } y \text{ are adjacent;} \\ 1 & \text{if edges } x \text{ and } y \text{ are adjacent;} \\ d & \text{if vertex } x \text{ and edge } y \text{ are incident.} \end{cases}$$

We may require $|f(x) - f(y)|$, for adjacent elements x and y, be greater than or equal to s, instead of 1, in the above defining inequality for some given positive integer s to get a more general notion of a (d, s)-total labelling; nevertheless we concentrate our attention only to the special case $s = 1$ in this paper. A $(d, 1)$-total labelling taking values in the set $\{0, 1, \ldots, k\}$ is called a $[k]$-$(d, 1)$-total labelling. The span of a $(d, 1)$-total labelling is the maximum difference between two labels. The minimum span, i.e. the minimum k, among all $[k]$-$(d, 1)$-total labellings of G, denoted $\lambda^T_d(G)$, is called the $(d, 1)$-total number of G.

A $(d, 1)$-total labelling of G is a generalization of an $L(2, 1)$-labelling of the subdivision of G studied in Whittlesey, Georges, and Mauro [15]. The notion of an $L(2, 1)$-labelling was motivated by an interference avoidance problem, introduced in Hale [7], in the assignment of radio frequency bands to transmitters. An $L(2, 1)$-labelling of G assigns nonnegative integer labels to the vertices of G so that vertices at distance two receive distinct labels and adjacent vertices receive labels that differ in absolute value by at least 2. Griggs and Yeh [6] initiated a systematic study into $L(2, 1)$-labellings of graphs that has been intensively developed ever since. The reader is referred to Yeh [17] for a recent survey of results and generalizations of $L(2, 1)$-labellings. The subdivision G^S of a graph G is the graph obtained by inserting one new vertex to each of the edges of G. If we define the span of an $L(2, 1)$-labelling to be the maximum difference between two labels, then the minimum span among all $L(2, 1)$-labellings of G^S is precisely $\lambda^T_2(G)$.

Havet and Yu [8] first introduced the notion of a $(d, 1)$-total labelling and their results have published only recently in [9]. Let $\Delta(G)$ denote the maximum degree of G. Havet and Yu proposed the following conjecture.

$(d, 1)$-Total Labelling Conjecture. $\lambda^T_d(G) \leq \min\{\Delta(G) + 2d - 1, 2\Delta(G) + d - 1\}$.
In addition to [9], positive evidence to this conjecture has also been given in [1], [4], and [13]. Note that $\lambda_d^T(G) + 1$ is equal to the total chromatic number $\chi''(G)$ of the graph G and the $(d,1)$-total labelling conjecture for the case $d = 1$ is equivalent to the well-known Total Coloring Conjecture proposed by Behzad [2] and independently by Vizing [14].

It should be pointed out that a $(d,1)$-total labelling is a special case ($r = s = 1$) of an $[r,s,d]$-coloring introduced and studied in [10], [11], and [12]. The $\lambda_{d,1,1}(G)$ of a graph G defined there is exactly $\lambda_d^T(G) + 1$.

In Section 2, we will derive upper bounds for $\lambda_d^T(G)$. Based on these values, we propose an upper bound conjecture in terms of the chromatic number and the chromatic index of G.

In Section 3, we compute some values of $\lambda_d^T(K_{m,n})$ for complete bipartite graphs $K_{m,n}$ and completely determine all $\lambda_d^T(K_{m,n})$ for $d = 1, 2, 3$. These values give further support to the $(d,1)$-total labelling conjecture.

2 Upper Bounds

We are going to present upper bounds for $\lambda_d^T(G)$ in terms of its maximum degree $\Delta(G)$, chromatic number $\chi(G)$, chromatic index $\chi'(G)$, and list chromatic index $\chi'_l(G)$. We will propose a conjecture on an upper bound of $\lambda_d^T(G)$ at the end of this section.

Let $\chi(G)$, or $\chi'(G)$, denote the smallest number of colors needed to color the vertices, respectively the edges, of G so that adjacent elements receive distinct colors. A vertex-coloring or an edge-coloring satisfying the above condition is said to be a proper vertex-coloring or edge-coloring. If each edge e of G is assigned a list $L(e)$ of possible colors and G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for all $e \in E(G)$, then we say that G is L-edge-colorable. The graph G is said to be k-edge-choosable if it is L-edge-colorable for every assignment L satisfying $|L(e)| = k$ for all $e \in E(G)$. Let $\chi'_l(G)$ denote the smallest k such that G is k-edge-choosable.

The following two lemmas were proved in Havet and Yu [9] and the case for $d = 2$ first appeared in Whittlesey, Georges, and Mauro [15].

Lemma 1 For any graph G, $\lambda_d^T(G) \leq \chi(G) + \chi'(G) + d - 2$.

Lemma 2 For any graph G, $\lambda_d^T(G) \leq 2\Delta(G) + d - 1$.

Throughout this paper, a proper vertex-coloring, or edge-coloring, using colors from the set $\{0,1,\ldots,k-1\}$ is said to be a k-vertex-coloring, or k-edge-
For integers $a \leq b$, we use $[a, b]$ to denote the set \{a, a + 1, \ldots, b\}. For integers a and d, the set $[a - d + 1, a + d - 1]$ is denote by $[a]_d$.

Theorem 3 For any graph G, $\lambda^T_d(G) \leq \chi'_d(G) + 4d - 3$.

Proof. Since $\chi(G) \leq \Delta(G) + 1$, we can give a proper vertex-coloring f_1 for G using colors $0, 1, \ldots, \Delta(G)$. For each edge $e = xy$, we define the list

$$L(e) = [0, \chi'_d(G) + 4d - 3] \setminus ([f_1(x)]_d \cup [f_1(y)]_d).$$

As $|L(e)| \geq \chi'_d(G)$, there exists an L-coloring f_2 for the edges of G. Since $\chi'_d(G) \geq \chi'_d(G) \geq \Delta(G)$, we have $\chi'_d(G) + 4d - 3 \geq \Delta(G)$. Consequently, $f_1 \cup f_2$ forms a $[\chi'_d(G) + 4d - 3]-(d, 1)$-total labelling of G.

Borodin, Kostochka, and Woodall [3] proved that $\chi'_d(G) \leq [\frac{3}{2}\Delta(G)]$ for a multigraph graph G. Hence, by Theorem 3, the following upper bound for $\lambda^T_d(G)$ emerges.

Theorem 4 For any graph G, $\lambda^T_d(G) \leq [\frac{3}{2}\Delta(G)] + 4d - 3$.

Note that, for fixed d and sufficient large $\Delta(G)$, the upper bound for $\lambda^T_d(G)$ in Theorem 4 is better than the one in Lemma 2. In the rest of this section, we shall improve the bounds of Lemmas 1 and 2.

Theorem 5 Let G be a graph with $\chi(G) = k$ and $\chi'(G) = k'$. If $k \geq 3d$, then $\lambda^T_d(G) \leq s + k' - 1$, where s is equal to $4d - 2$ when $k = 3d$ or $3d + 1$, and equal to $\lceil (k + 9d - 5)/3 \rceil$ when $k \geq 3d + 2$.

Proof. We choose a mapping $f : V(G) \cup E(G) \rightarrow [0, s + k' - 1]$ such that the restriction of f to $V(G)$ is a k-vertex-coloring and the restriction of f to $E(G)$ is a proper edge-coloring using colors in $[s, s + k' - 1]$.

Let G' be the subgraph of G induced by the edges in $E' = \{e \in E(G) \mid f(e) \in [s, k + d - 2]\}$. Then $\Delta(G') \leq k + d - s - 1$. To any $e = xy \in E(G')$, we assign the list $L(e) = [0, k + d - 2] \setminus ([f(x)]_d \cup [f(y)]_d)$. Then $|L(e)| \geq k - 3d + 1$. Since $\Delta(G') \leq k + d - s - 1$, G' is a disjoint union of edges when $k = 3d$, and is a disjoint union of paths and even cycles when $k = 3d + 1$. It is well-known that $\chi'_d(G') \leq |L(e)|$ in these cases. When $k \geq 3d + 2$, it follows from $s \geq (k + 9d - 5)/3$ that $3(k + d - s - 1)/2 \leq k + 3d + 1$. Since $\chi'_d(G') \leq [3\Delta(G)/2] \leq 3(k + d - s - 1)/2$, we have $\chi'_d(G') \leq |L(e)|$ again. Hence, there always exists an L-edge-coloring f' for G'. Re-labelling edges in G' by f' while keeping the rest of G unchanged, we get an $[s + k' - 1]-(d, 1)$-total labelling for G.

By Theorem 5, the following conjecture holds for graphs with $\chi(G) \geq 3d$.

4
Conjecture 1 Let a graph G satisfy $\chi(G) > \max\{2, d\}$. Then

$$\lambda_d^T(G) \leq \chi(G) + \chi'(G) + d - 3.$$

The known values of $\lambda_d^T(K_n)$ for complete graphs K_n on n vertices that have been computed in [9] support the above conjecture. The following corollary also appeared in [9].

Corollary 6 Let G be a bipartite graph. Then $\Delta(G) + d - 1 \leq \lambda_d^T(G) \leq \Delta(G) + d$ and $\lambda_d^T(G) = \Delta(G) + d$ when $d \geq \Delta(G)$ or G is regular.

For a bipartite graph G, it is well-known that $\chi'(G) = \Delta(G)$. Hence, a consequence of Corollary 6 is $\lambda_d^T(G) = \Delta(G) + d = \chi(G) + \chi'(G) + d - 2$ for a bipartite regular graph G. This together with the fact $\lambda_4^T(K_4) = 9$ show that the assumption $\chi(G) > \max\{2, d\}$ in Conjecture 1 cannot be removed.

3 Complete Bipartite Graphs

The following can be easily derived when we examine the label of a vertex of maximum degree and the labels of its incident edges.

Lemma 7 (1) $\lambda_d^T(G) \geq \Delta(G) + d - 1$.

(2) If $\lambda_d^T(G) = \Delta(G) + d - 1$, then each vertex of maximum degree is labelled with 0 or $\Delta(G) + d - 1$ in any $[\Delta(G) + d - 1]-(d,1)$-total labelling.

Throughout this section, let $K_{m,n}$ ($m \geq n$) denote the complete bipartite graph with parts $X = \{x_1, x_2, \ldots, x_n\}$ and $Y = \{y_1, y_2, \ldots, y_m\}$. By Corollary 6, $m + d - 1 \leq \lambda_d^T(K_{m,n}) \leq m + d$. When a function f is defined over the edges of $K_{m,n}$, we write $f(i, j)$ for $f(x_iy_j)$. Furthermore, let $X_i = \{f(i, j) \mid 1 \leq j \leq m\}$ and $Y_j = \{f(i, j) \mid 1 \leq i \leq n\}$.

Theorem 8 The following statements are equivalent.

(1) $m \geq \min\{2n, n + 2d - 1\}$ and $m \geq n + d$.

(2) There exists an $[m + d - 1]-(d,1)$-total labelling f for $K_{m,n}$ such that $f(x) = 0$ for all $x \in X$, or $f(x) = m + d - 1$ for all $x \in X$.

Proof. (1) \Rightarrow (2). We are going to construct an $[m + d - 1]-(d,1)$-total labelling f for $K_{m,n}$ such that $f(x) = 0$ for all $x \in X$.

5
First assume that \(m \geq 2n \). Let \(\rho \) be the composition of the two cyclic permutations \((1 2 \cdots n)\) and \((n + 1 \ n + 2 \cdots m)\) on the set \([1, m]\). Let \(f(x_i) = 0 \) for all \(1 \leq i \leq n \), \(f(y_j) = m + d - 1 \) for \(1 \leq j \leq n \), \(f(y_j) = 1 \) for \(n + 1 \leq j \leq m \), and \(f(i, j) = (d - 1) + \rho_{d-1}(j) \) for \(1 \leq i \leq n \) and \(1 \leq j \leq m \). Since \(m \geq 2n \), adjacent edges are labelled with distinct labels. We see that \(Y_j = [d, d+n-1] \) when \(1 \leq j \leq n \) and \(Y_j \subseteq [d+n, d+m-1] \) when \(n < j \leq m \). Since \(1 \leq d \leq m - n \), the absolute difference between the label of any vertex and the label of any of its incident edge is at least \(d \), hence \(f \) satisfies our requirements.

Next assume that \(m \geq n+2d-1 \). Let \(\sigma \) be the cyclic permutation \((1 2 \cdots m)\) on the set \([1, m]\). For \(1 \leq i \leq n \) and \(1 \leq j \leq m \), let \(f(x_i) = 0 \), \(f(y_j) = (d-1) + \sigma^{n-1+d}(j) \), and \(f(i, j) = (d-1) + \sigma^{i-1}(j) \). Adjacent edges are obviously labelled with distinct labels. Since \(m \geq n+2d-1 \), we see that \([\sigma^{n-1+d}(j) - \sigma^{i-1}(j)] \geq d\) for \(1 \leq i \leq n \) and \(1 \leq j \leq m \), hence \(f \) satisfies our requirements.

\[(2) \Rightarrow (1) \]. Assume there exists an \([m+d-1]-(d,1)\)-total labelling \(f \) for \(K_{m,n} \) such that \(f(x) = 0 \) for all \(x \in X \). (By symmetry, we only need to show this case.)

Since \(f(x_i) = 0 \) for all \(i \), we have \(f(i, j) \geq d \) and \(X_i = [d, d+n-1] \) for all \(i \) and \(j \). Without loss of generality, we may assume that \(d \in Y_j \) for \(1 \leq j \leq n \), and hence \(f(y_j) \geq 2d \). Let \(t_j \) denote the largest number in \(Y_j \). Then \(t_j \geq n + d - 1 \).

Assume that \(t_p > f(y_p) \) for some \(p \in [1, n] \). Then \([f(y_p)]_d \subseteq [d, t_p]\) and \([f(y_p)]_d \cap Y_p = \emptyset\). Moreover, since \(|[f(y_p)]_d| = 2d-1\), \(Y_p \in [d, t_p]\), and \(|Y_p| = n\), it follows that \(t_p - d - 1 \geq n + 2d - 1 \). As \(t_p \leq m + d - 1 \), we conclude that \(m \geq n + 2d - 1 \geq n + d \).

Assume \(t_j < f(y_j) \) for all \(j \in [1, n] \). Then we have \(t_j \leq f(y_j) - d \leq m - 1 \), implying \(n + d - 1 \leq m - 1 \). Therefore, \(m \geq n + d \). Moreover, it also follows that \(Y_j \subseteq [d, m-1] \) for \(1 \leq j \leq n \). This implies that the edges that can be assigned labels from the set \([m, m + d - 1]\) must be incident to \(y_j \) for some \(j \in [n+1, m] \). Hence, \(nd = \sum_{j=n+1}^{m} |Y_j \cap [m, m + d - 1]| \leq (m-n)d \), implying \(2n \leq m \).

By Theorem 8, to further investigate the values of \(m \) and \(n \) such that \(\lambda^*_d(K_{m,n}) = m + d - 1 \), it remains to study the following two possibilities.

Case 1. \(m \geq \min\{2n, n + 2d - 1\} \) and \(m < n + d \), or equivalently, \(2n \leq m < n + d \).

Case 2. \(m < \min\{2n, n + 2d - 1\} \).
We shall deal with Cases 1 and 2 in Theorems 9 and 10, respectively. There is one more notation used in the proofs of Theorems 9 and 10. For any \([m+d-1]-(d,1)\)-total labelling \(f\) for \(K_{m,n}\), by Lemma 7, each vertex \(x_i \in X\) is labelled with either 0 or \(m + d - 1\). Denote

\[
I = \{i \mid f(x_i) = 0 \text{ and } 1 \leq i \leq n\}.
\]

Then we have \(X_i = [d, m + d - 1]\) for each \(i \in I\), while \(X_i = [0, m - 1]\) for each \(i \notin I\).

Theorem 9 If \(2n \leq m < n + d\), then \(\lambda_d^T(K_{m,n}) = m + d\).

Proof. The assumption \(2n \leq m < n + d\) implies that \(n < d\) and \(m < 2d\). Suppose to the contrary that \(\lambda_d^T(K_{m,n}) = m + d - 1\). Let \(f\) be an \([m+d-1]-(d,1)\)-total labelling. By Theorem 8, \(1 \leq |I| \leq n - 1\). Since \(d \in X_i\) for any \(i \in I\), we have \(d \in Y_j\) for some \(j\). It implies that \(2d \leq f(y_j) \leq m + d - 2\) because \(f(y_j) \notin \{0, m + d - 1\}\), and hence \(d \leq m - 2\). It follows that \(d \in X_i\) for any \(i \not\in I\). Now \(d\) belongs to all \(X_i\)'s. Without loss of generality, we may assume that \(d \in Y_j\) for \(1 \leq j \leq n\).

Pick \(i_0 \in I\). So \(X_{i_0} = [d, m + d - 1]\). Because all \(y_j\), \(1 \leq j \leq n\), are adjacent to \(x_{i_0}\), there exists \(w \geq n + d - 1\) such that \(w \in Y_{j_0}\) for some \(j_0 \in [1, n]\). We know that \(2d \leq f(y_{j_0}) \leq m + d - 2\). If \(\alpha \in [m - 1, m + d - 1]\), then \(|f(y_{j_0}) - \alpha| < d\) since \(m < 2d\). It follows that \(Y_{j_0} \cap [m - 1, m + d - 1] = \emptyset\) and \(n + d - 1 \leq w \leq m - 2\), contradicting the assumption \(m < n + d\).

Theorem 10 Suppose that \(m < \min\{2n, n + 2d - 1\}\) and \(\lambda_d^T(K_{m,n}) = m + d - 1\). Then all the following statements hold.

1. \(m \geq 3d + 1\).
2. \((n - m + 3d - 1)(2n - m) \leq nd\).
3. \(m \geq n + d\).
4. \(\alpha = [(m - d - 2)/(2d - 1)]\).

Proof. Assume \(m < \min\{2n, n + 2d - 1\}\) and \(\lambda_d^T(K_{m,n}) = m + d - 1\). Let \(f\) be an \([m+d-1]-(d,1)\)-total labelling. By Theorem 8, \(1 \leq |I| \leq n - 1\). Without loss of generality, we may assume that \(\{d, m - 1\} \subseteq Y_j\) for \(1 \leq j \leq 2n - m\). It follows that \(2d \leq f(y_j) \leq m - d - 1\), and hence \(m \geq 3d + 1\). This completes the proof for (1).

Since \(2d \leq f(y_j) \leq m - d - 1\) for \(1 \leq j \leq 2n - m\), we have \(|[d, m - 1] \cap Y_j| \leq m - 3d + 1\). As \(|Y_j| = n\), it follows that \(|(0, d - 1] \cup [m, m + d - 1]) \cap Y_j| \geq n - m + 3d - 1\). Note that each label in \([0, d - 1]\) is assigned to exactly \(n - |I|\).
edges, while each label in \([m, m + d - 1]\) is assigned to exactly \(|I|\) edges. We conclude that

\[
(n - m + 3d - 1)(2n - m) \leq 2^{n-m} \left| \bigcup_{j=1}^{n-m} \left([0, d - 1] \cup [m, m + d - 1] \right) \cap Y_j \right| \\
\leq nd.
\]

This completes the proof for (2).

To prove (3), consider \(Y_j\) for \(1 \leq j \leq 2n - m\). Since \(2d \leq f(y_j) \leq m - d - 1\) and \([f(y_j)]_d \cap Y_j = \emptyset\), we obtain that \(n = |Y_j| = |[0, m + d - 1] \cap Y_j| \leq m + d - (2d - 1) = m - d + 1\). Hence \(m \geq n + d - 1\). Suppose \(m = n + d - 1\). Then (2) implies \(n \leq 2d - 2\). This is impossible since \(m = n + d - 1 \geq 3d + 1\) by (1).

It follows from (1) that the number \(\alpha\) in (4) is positive and \(\alpha(2d - 1) + 1 \leq m - d - 1 \leq (\alpha + 1)(2d - 1)\). For each \(j \in [1, 2n - m]\), since \(2d \leq f(y_j) \leq m - d - 1\) and \([f(y_j)]_d \cap Y_j = \emptyset\), the following statement holds: For each \(s \in [1, \alpha]\), if \(f(y_j) \in [s(2d - 1) + 1, (s + 1)(2d - 1)]\), then \(s(2d - 1) + d \notin Y_j\). For each \(i \in [1, \alpha]\), let \(t_i = \{|j| j \in [1, 2n - m] \text{ and } f(y_j) \in [i(2d - 1) + 1, (i + 1)(2d - 1)]\}\). Because \(t_1 + t_2 + \ldots + t_\alpha = 2n - m\), there exists some \(k \in [1, \alpha]\) such that \(t_k \geq (2n - m)/\alpha\). Therefore, \(k(2d - 1) + d\) does not belong to at least \((2n - m)/\alpha\) of the \(Y_j\)'s for \(1 \leq j \leq 2n - m\). Since the label \(k(2d - 1) + d\) belongs to exactly \(n\) of the \(Y_j\)'s for \(1 \leq j \leq m\), we conclude that \((2n - m)/\alpha \leq m - n\), hence (4) follows.

The following is an immediate consequence of Theorem 9 and Theorem 10(3).

Corollary 11 If \(m < n + d\), then \(\chi^T_\alpha(K_{m,n}) = m + d\).

Now we are ready to give exact values of \(\chi^T_\alpha(K_{m,n})\) for \(d = 1, 2, 3\). The case for \(d = 1\) is completely determined by the total chromatic number of \(K_{m,n}\) and the reader is referred to Theorem 3.2 in Yap [16] for a proof.

Theorem 12 Let \(1 \leq n \leq m\). Then

\[
\chi^T_1(K_{m,n}) = \chi''(K_{m,n}) - 1 = m + \delta_{m,n},
\]

where \(\delta_{m,n}\) denotes the Kronecker delta, i.e., its value is 1 if \(m = n\) and is 0 otherwise.
Theorem 13 Let $1 \leq n \leq m$. Then

$$
\lambda^T_2(K_{m,n}) = \begin{cases}
 m + 2 & \text{if } m \leq n + 1, \text{ or} \\
 m = n + 2 \text{ and } n \geq 3; \\
 m + 1 & \text{otherwise}.
\end{cases}
$$

Proof. By Corollary 6, it suffices to consider the case for $m > n$. The results for $m \geq n + 3$ follow from Theorem 8. For $m = n + 1$, the result follows from Corollary 11. Assume $m = n + 2$. The cases for $n = 1, 2$ follow from Theorem 8. The cases for $n = 3, 4$ follow from Theorem 10(1). The cases for $n = 5, 6$ follow from Theorem 10(4). All the remaining cases follow from Theorem 10(2).

Theorem 14 Let $1 \leq n \leq m$. Then

$$
\lambda^T_3(K_{m,n}) = \begin{cases}
 m + 3 & \text{if } m \leq n + 2, \text{ or} \\
 m = n + 3 \text{ and } n \geq 4, \text{ or} \\
 m = n + 4 \text{ and } n = 5, 9, 10, 13, 14, 15; \\
 m + 2 & \text{otherwise}.
\end{cases}
$$

Proof. By Corollary 6, it suffices to consider the case for $m > n$. The results for $m \leq n + 2$ and $m \geq n + 5$, respectively, follow from Corollary 11 and Theorem 8.

Assume $m = n + 3$. The cases for $n = 1, 2, 3$ follow from Theorem 8. The cases for $n = 4, 5, 6$ follow from Theorem 10(1). The case for $n = 7$ follows from Theorem 10(4). The remaining cases for $n \geq 8$ follow from Theorem 10(2).

Finally assume $m = n + 4$. The cases for $n = 1, 2, 3, 4$ follow from Theorem 8. The case for $n = 5$ follows from Theorem 10(1). The cases for $n \geq 17$ follow from Theorem 10(2). The cases for $n = 9, 10, 13, 14, 15$ follow from Theorem 10(4). In the appendix, we list $[n+6]-(3, 1)$-total labellings obtained by ad hoc methods for each of the $K_{n+4,n}$, $n = 6, 7, 8, 11, 12, 16$.

We conclude this paper with the following problem whose answer is positive for $d = 1, 2, 3$ from our results.

Problem. Under the assumption that $m < \min\{2n, n+2d-1\}$, are conditions (1) to (4) in Theorem 10 sufficient for $\lambda^T_d(K_{m,n}) = m + d - 1$?

Acknowledgment. The authors would like to express their appreciation to Xuding Zhu for his comments on an early draft of this paper.
A Appendix

When \(n \) is one of the numbers 6, 7, 8, 11, 12, or 16, an \([n + 6]-(3,1)\)-total labelling for \(K_{n+4,n} \) is given below by a table. The notation used is as follows.

The label of the \(i \)-th row is assigned to the vertex \(x_i \in X \).

The label of the \(j \)-th column is assigned to the vertex \(y_j \in Y \).

The label at the \((i, j)\) cell is assigned to the edge \(x_iy_j \).

\[
\begin{array}{cccccccccccc}
\hline
& 6 & 6 & 9 & 9 & 11 & 11 & 1 & 1 & 1 & 1 \\
\hline
12 & 2 & 0 & 1 & 3 & 5 & 4 & 7 & 8 & 9 & 6 \\
12 & 3 & 1 & 0 & 2 & 6 & 5 & 9 & 4 & 8 & 7 \\
12 & 9 & 2 & 3 & 0 & 1 & 6 & 8 & 7 & 4 & 5 \\
0 & 10 & 3 & 4 & 6 & 8 & 7 & 12 & 11 & 5 & 9 \\
0 & 11 & 9 & 5 & 4 & 7 & 3 & 10 & 12 & 6 & 8 \\
0 & 12 & 10 & 6 & 5 & 3 & 8 & 11 & 9 & 7 & 4 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccccc}
\hline
& 6 & 6 & 7 & 12 & 12 & 12 & 12 & 1 & 1 & 1 & 1 \\
\hline
13 & 0 & 2 & 1 & 5 & 8 & 3 & 7 & 9 & 10 & 4 & 6 \\
13 & 1 & 0 & 3 & 6 & 2 & 4 & 5 & 8 & 7 & 9 & 10 \\
13 & 3 & 1 & 4 & 2 & 5 & 0 & 6 & 10 & 9 & 8 & 7 \\
0 & 9 & 3 & 11 & 7 & 6 & 5 & 4 & 12 & 8 & 10 & 13 \\
0 & 10 & 9 & 12 & 8 & 7 & 6 & 3 & 11 & 5 & 13 & 4 \\
0 & 12 & 10 & 13 & 3 & 4 & 7 & 8 & 6 & 11 & 5 & 9 \\
0 & 13 & 11 & 10 & 4 & 3 & 8 & 9 & 7 & 12 & 6 & 5 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccccc}
\hline
& 6 & 6 & 7 & 7 & 13 & 13 & 13 & 1 & 1 & 1 & 1 \\
\hline
14 & 0 & 1 & 3 & 2 & 5 & 6 & 4 & 8 & 11 & 7 & 9 & 10 \\
14 & 1 & 0 & 2 & 3 & 6 & 7 & 10 & 9 & 5 & 4 & 11 & 8 \\
14 & 3 & 2 & 0 & 1 & 9 & 10 & 6 & 7 & 4 & 8 & 5 & 11 \\
14 & 2 & 3 & 1 & 10 & 0 & 4 & 7 & 6 & 9 & 11 & 8 & 5 \\
0 & 11 & 10 & 4 & 13 & 3 & 8 & 9 & 5 & 12 & 14 & 6 & 7 \\
0 & 12 & 11 & 13 & 14 & 8 & 3 & 5 & 4 & 7 & 9 & 10 & 6 \\
0 & 13 & 12 & 14 & 11 & 7 & 5 & 3 & 10 & 8 & 6 & 4 & 9 \\
0 & 14 & 13 & 11 & 12 & 10 & 9 & 8 & 3 & 6 & 5 & 7 & 4 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccccc}
\hline
& 6 & 6 & 11 & 11 & 11 & 11 & 16 & 16 & 16 & 16 & 1 & 1 & 1 & 1 \\
\hline
0 & 11 & 16 & 9 & 5 & 6 & 15 & 17 & 10 & 3 & 8 & 4 & 12 & 13 & 14 & 7 \\
0 & 12 & 11 & 10 & 6 & 14 & 17 & 5 & 13 & 4 & 3 & 9 & 15 & 7 & 16 & 8 \\
0 & 13 & 12 & 17 & 7 & 16 & 3 & 15 & 4 & 5 & 6 & 10 & 8 & 11 & 9 & 14 \\
0 & 14 & 13 & 15 & 17 & 8 & 16 & 6 & 5 & 10 & 9 & 3 & 11 & 4 & 7 & 12 \\
0 & 15 & 14 & 13 & 16 & 17 & 7 & 4 & 3 & 8 & 12 & 6 & 9 & 5 & 10 & 11 \\
0 & 16 & 17 & 14 & 15 & 7 & 6 & 3 & 9 & 12 & 4 & 5 & 13 & 8 & 11 & 10 \\
17 & 0 & 1 & 11 & 14 & 3 & 4 & 2 & 12 & 13 & 7 & 8 & 5 & 10 & 6 & 9 \\
17 & 1 & 3 & 12 & 0 & 2 & 5 & 14 & 8 & 11 & 10 & 7 & 6 & 9 & 13 & 4 \\
17 & 3 & 2 & 1 & 8 & 4 & 14 & 7 & 0 & 9 & 5 & 11 & 10 & 6 & 12 & 13 \\
17 & 9 & 10 & 2 & 3 & 0 & 1 & 8 & 7 & 6 & 11 & 13 & 14 & 12 & 4 & 5 \\
17 & 10 & 9 & 3 & 2 & 1 & 8 & 0 & 11 & 7 & 13 & 12 & 4 & 14 & 5 & 6 \\
\hline
\end{array}
\]
References

