
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2016

Brookfield, Demeke, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Indicate CLEARLY which problems you want us to grade—otherwise, we
will select which ones to grade, and they may not be the ones that you want us to grade.
Be sure to show enough work that your answers are adequately supported.

Notation: Q denotes the rational numbers; Zn denotes the integers modulo n; N denotes the
natural numbers.

Groups

(G1) Let G be a group. Suppose that H is a subgroup of G and N is a normal subgroup
of G. Prove that

NH = {nh | n ∈ N, h ∈ H}
is a subgroup of G.
Answer: [See F08] Of course, K 6= ∅ and H 6= ∅, so KH 6= ∅. Suppose x1, x2 ∈ KH.
Then x1 = k1h1 and x2 = k2h2, with k1, k2 ∈ K and h1, h2 ∈ H. Since K is normal,
h1h

−1
2 k−1

2 ∈ h1h−1
2 K = Kh1h

−1
2 and so h1h

−1
2 k−1

2 = k3h1h
−1
2 for some k3 ∈ K. This

implies
x1x

−1
2 = k1h1h

−1
2 k−1

2 = k1k3h1h
−1
2 ∈ KH.

By the subgroup criterion, KH ≤ G.
(G2) Let G be a finite group and H be a subgroup of G.

(a) Prove that for any g ∈ G, that gH and H have the same size.
(b) Prove for any a, b ∈ G, that either aH ∩ bH = ∅ or aH = bH.
(c) Use (a) and (b) to prove Lagrange’s theorem.
Answer: See, for example, Fraleigh, Section 10.

(G3) Find all Sylow 2-subgroups of the dihedral group

D12 = {1, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5}
with |r| = 6, |s| = 2 and rs = sr−1. Feel free to use the fact that rns = sr−n for all
n ∈ Z.
Answer: By Sylow’s Theorem the number of Sylow 2-subgroups, n2, satisfies n2 ≡ 1
mod 2 and n2|12, so n2 = 1 or n2 = 3. We show, in fact, that n2 = 3.

Sylow 2-subgroups have order 4, and any subgroup of order 4 is a Sylow 2-subgroup.
Since D12 contains no elements of order 4, the Sylow 2-subgroups must be isomorphic
to the Klein group and so each contains 3 pairwise commuting elements of order 2.
D12 contains 7 elements of order 2: r3, s, sr, sr2, sr3, sr4, sr5. Because sr3 = r3s, r3

commutes with all elements of D12, so any subgroup generated by r3 and another
element of order 2 will be isomorphic to the Klein group. Thus the Sylow 2-subgroups
are

G1 = 〈r3, s〉 = 〈r3, sr3〉 = {1, r3, s, sr3}
G2 = 〈r3, sr〉 = 〈r3, sr4〉 = {1, r3, sr, sr4}
G3 = 〈r3, sr2〉 = 〈r3, sr5〉 = {1, r3, sr2, sr5}
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Rings

(R1) Prove or disprove: 2Z and 3Z are isomorphic as rings.
Answer: These rings are not isomorphic. For example, the equation x + x = x2 has
two solutions (x = 0, 2) in 2Z, but only one solution (x = 0) in 3Z.

OR

Suppose that φ : 2Z→ 3Z is a ring homomorphism. Then φ(2) = 3k for some k ∈ Z.
Then

φ(4) = φ(2 + 2) = φ(2) + φ(2) = 6k

and

φ(4) = φ(2 · 2) = φ(2) · φ(2) = 9k2.

Thus 6k = 9k2. The only integer satisfying this equation is k = 0, and so φ(2) = 0.
Because we also have φ(0) = 0, φ is not injective, and so φ is not an isomorphism.

(R2) Let φ : R → S be an onto ring homomorphism with kernel K. Prove the following.
[For each part prove that the given set is an ideal and that it is prime.]
(a) If P is a prime ideal of R that contains K, then φ(P ) is a prime ideal of S.
(b) If Q is a prime ideal of S, then φ−1(Q) is a prime ideal of R that contains K.
Answer:

(a) Suppose that P is a prime ideal of R that contains K.
a)) Let s1, s2 ∈ φ(P ). Then s1 = φ(r1) and s2 = φ(r2) for some r1, r2 ∈ P . Then
s1 − s2 = φ(r1) − φ(r2) = φ(r1 − r2) ∈ φ(P ) because r1 − r2 ∈ P . This means
that φ(P ) is a subgroup of (S,+).
b)) If q ∈ φ(P ) and s ∈ S, then, since φ is surjective, φ(r) = s and q = φ(p) for
some r ∈ R and p ∈ P . Then sq = φ(r)φ(p) = φ(rp) ∈ φ(P ) because P is an
ideal and rp ∈ P . This shows that φ(P ) is an ideal.
c)) Suppose that s1, s2 ∈ S are such that s1s2 ∈ φ(P ). Then there are r1, r2 ∈ R
and p ∈ P such that s1 = φ(r1), s2 = φ(r2) and s1s2 = φ(p). This implies
φ(p) = s1s2 = φ(r1)φ(r2) = φ(r1r2) and so r1r2 − p ∈ kerφ = K ⊆ P . Since P
is closed under addition r1r2 ∈ P . Because P is prime, either r1 ∈ P and hence
s1 ∈ φ(P ), or r2 ∈ P and hence s2 ∈ φ(P ). This makes φ(P ) a prime ideal.

(b) Suppose that Q is a prime ideal of S.
a)) Let q1, q2 ∈ φ−1(Q). Then φ(q1), φ(q2) ∈ Q and so φ(q1−q2) = φ(q1)−φ(q2) ∈
Q, that is, q1 − q2 ∈ φ−1(Q). This means that φ−1(Q) is a subgroup of (R,+).
b)) Let r ∈ R and q ∈ φ−1(Q). Then φ(q) ∈ Q and φ(rq) = φ(r)φ(q) ∈ Q, since
Q is an ideal, and so rq ∈ φ−1(Q). This means that φ−1(Q) is an ideal of R.
c)) If k ∈ K, then φ(k) = e ∈ Q and so k ∈ φ−1(Q). This means that K ≤ Q.
d)) Suppose that r1, r2 ∈ R satisfy r1r2 ∈ φ−1(Q). Then φ(r1)φ(r2) = φ(r1r2) ∈
Q. Since Q is prime, either φ(r1) ∈ Q or φ(r2) ∈ Q. Thus either r1 ∈ φ−1(Q) or
r2 ∈ φ−1(Q). This means that φ−1(Q) is a prime ideal.

(R3) Let I and J be ideals of a domain R. Show that K = {r ∈ R | rI ⊆ J} is an ideal
of R.
Answer: First 0 ∈ K because 0I = {0} ⊆ J .

Let a, b ∈ K. Then, for all i ∈ I, we have ai ∈ aI ⊆ J and bi ∈ bI ⊆ J . Since J
is an ideal, (a− b)i = ai− bi ∈ J . Since this holds for all i ∈ I, we have shown that
a− b ∈ K, and that K is a subgroup of (R,+).
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Let a ∈ K and r ∈ R. Then, for all i ∈ I, we have ai ∈ aI ⊆ J . Since J is an
ideal, (ra)i = r(ai) ∈ J . Since this holds for all i ∈ I, we have (ra)I ⊆ J , that is,
ra ∈ K.

Fields

(F1) Let σ be a field automorphism of Q. Prove that σ is the identity map.
Answer: [See F04] Because σ is a field homomorphism we have σ(1) = 1, and then,
because σ is a group homomorphism from (Q,+) to itself, we have σ(n) = n for all
n ∈ Z. (For example, σ(2) = σ(1 + 1) = σ(1) + σ(1) = 1 + 1 = 2.)

Now let r = p/q ∈ Q with p, q ∈ Z and q 6= 0. Then σ(p) = p, σ(q) = q and
p = rq, so

p = σ(p) = σ(rq) = σ(r)σ(q) = σ(r)q.

Dividing by q we get σ(r) = p/q = r.
Since this holds for all r ∈ Q, σ is the identity map.

(F2) Prove that every finite integral domain is a field.
Answer: [See F02, F07, F08] Fraleigh, Theorem 19.11

(F3) Let E be the splitting field for f(x) = x3 + 2 over Z7. Calculate [E : Z7]. Hint: Z7

contains three cube roots of unity. Find them.
Answer: From the table below we see that 1, 2 and 4 are cube roots of 1 and that f
has no zeros in Z7.

x = 0 1 2 3 4 5 6

x3 = 0 1 1 6 1 6 6

f(x) = x3 + 2 = 2 3 3 1 3 1 1

Thus f is irreducible over Z7 and, if α is a zero of f in E, then [Z7(α) : Z7] =
deg f = 3. Because 1, 2 and 4 are cube roots of 1, the zeros of f are α, 2α and
4α. Thus all zeros of f are in Z7(α), the slitting field for f is Z7(α), E = Z7(α) and
[E : Z7] = [Z7(α) : Z7] = 3.
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