Circular Coloring for Graphs with Distance Constraints *

Daphne Der-Fen Liu
Department of Mathematics
California State University, Los Angeles
Los Angeles, CA 90032, USA
Email: dliu@calstatela.edu

June 4, 2004

Abstract

Let $G=(V, E)$ be a simple un-weighted graph, and let $\vec{d}=\left(d_{1}\right.$, d_{2}, \cdots, d_{m}) be a sequence of positive reals. For a positive real r, let S_{r} denote the circle on R^{2} centered at the origin with circumference r. A circular r-coloring for G with distance constraint \vec{d} is a mapping $f: V(G) \rightarrow S_{r}$ such that $|f(u)-f(v)|_{r} \geq d_{i}$, whenever the distance between u and v in G is i (where $|x-y|_{r}$ is the length of a shorter arc between x and y on S_{r}). The circular chromatic number of G with distance constraint \vec{d}, denoted by $\chi_{c}(G(\vec{d}))$, is the infimum of r such that there exists a circular r-coloring for G with distance constraints \vec{d}. For any cycle $C_{n}, n \geq 3$, we determine the value of $\chi\left(C_{n}(d, 1)\right)$, expressed as a continuous, piecewise linear function of $d, d>0$. In addition, we discuss relations between circular coloring (for weighted graphs) and integral distance labeling.

1991 Mathematics Subject Classification. 05C15
Keywords. circular chromatic number, circular distance two labeling, distance labeling.

[^0]
1 Introduction

Introduced by Mohar [9], circular coloring for edge weighted graphs is a generalization of conventional circular coloring for simple graphs. An edge weighted graph with vertex set V is a pair $G=(V, A)$, where $A: V \times V \rightarrow$ $R^{+} \cup\{0\}$ is a weight assignment. For each $(u, v) \in V \times V$, we write $a_{u v}=$ $A(u, v)$. For a positive real r, denote $S_{r} \subset R^{2}$ the circle with circumference r centered at the origin of R^{2}. For any $x, y \in S_{r}$, let $l(x, y)$ denote the arc length from x to y, in the clockwise direction. A circular r-coloring of $G=(V, A)$ is a function, $c: V \rightarrow S_{r}$, such that $l(c(u), c(v)) \geq a_{u v}$ for every $(u, v) \in V \times V$. The circular chromatic number $\chi_{c}(G)$ of an edge-weighted graph $G=(V, A)$ is the infimum of all real numbers r for which there exists a circular r-coloring of G.

The weights are weakly symmetric if the following is satisfied: For any $u, v \in V$, if $a_{u v}=0$, then $a_{v u}=0$. The weights are called symmetric if $a_{u v}=a_{v u}$, for every $u, v \in V$. Mohar [9] proved that the infimum in the above definition of $\chi_{c}(G)$ for edge weighted graphs can be replaced by minimum, if the weights are weakly symmetric.

We investigate circular coloring for weighted graphs with distance constraints. For any $u, v \in V$, let $\operatorname{dist}_{G}(u, v)$ denote the distance (length of a shortest path) between u and v in G; when G is clear in the context, we simply denote $\operatorname{dist}_{G}(u, v)$ by $\operatorname{dist}(u, v)$. Let $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$ be a sequence of positive reals. The graph G with distance constraint \vec{d}, denoted by $G\left(d_{1}, d_{2}, \cdots, d_{m}\right)=G(\vec{d})=(V, A)$, is a symmetric edge weighted graph, defined as follows. For each $u, v \in V(G)$, let $a_{u v}=a_{v u}=d_{i}$, if $\operatorname{dist}_{G}(u, v)=i$ where $i=1,2, \cdots, m$; otherwise $a_{u v}=0$. Following this notion, the conventional circular chromatic number $\chi_{c}(G)$ of a simple un-weighted graph $G=(V, E)$ is the case when $\vec{d}=(1)$, that is, $\chi_{c}(G)=\chi_{c}(G(1))$; and the conventional circular chromatic number of G^{2}, the square of G (by adding edges between vertices of distance two apart), has $\chi_{c}\left(G^{2}\right)=\chi_{c}(G(1,1))$.

Section 3 of this article is devoted to complete solutions of $\chi_{c}\left(C_{n}(d, 1)\right)$,
for any cycle C_{n} and any $d>0$. For any $n \geq 3$, we give the formula of $\chi_{c}\left(C_{n}(d, 1)\right)$, expressed as a continuous, piecewise linear function of d.

Let $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$ be positive reals. For a simple un-weighted graph $G=(V, E)$, circular coloring for $G(\vec{d})$ is closely related to integral circular distance labeling. For a positive integer k and a graph $G=(V, E)$, a circular $(k ; \vec{d})$-labeling of G is a function, $f: V(G) \rightarrow\{0,1,2, \cdots, k-1\}$, such that the following is satisfied:

$$
|f(x)-f(y)|_{k} \geq d_{i}, \text { if } \operatorname{dist}_{G}(x, y)=i \text { and } i=1,2, \cdots, m
$$

where $|x-y|_{k}=\min \{|x-y|, k-|x-y|\}$. The $\sigma\left(d_{1}, d_{2}, \cdots, d_{m}\right)$-number (or $\sigma_{\vec{d}}$-number) of an un-weighted simple graph G, denoted by $\sigma_{\vec{d}}(G)$, is the smallest integer k such that G admits a circular $(k ; \vec{d})$-labeling. The special case when $\vec{d}=\left(d_{1}, d_{2}\right)$ is also known as the circular distance two labeling; the values of $\sigma_{d_{1}, d_{2}}(G)$ for some families of graphs have been studied in $[4,5,6,7,8]$.

In the next section, we establish the following relation for any simple graph G and any $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$ of positive integers d_{i} :

$$
\begin{equation*}
\sigma_{\vec{d}}(G)-1<\chi_{c}(G(\vec{d})) \leq \sigma_{\vec{d}}(G) \tag{1.1}
\end{equation*}
$$

The upper bound in (1.1) is sharp for some graphs. The result on the values of $\chi_{c}\left(C_{n}(d, 1)\right)$ for cycles obtained in this article implies that the lower bound in (1.1) is sharp, in the sense that there exist graphs G such that the values of $\chi_{c}(G(\vec{d}))$ approach to the lower bound, as closely as possible.

2 Basic Properties

For any reals a, b with $a \leq b$, we denote the half-open interval $[a, b)$ by the set of all reals $x, a \leq x<b$. For any real r, we regard S_{r} as $[0, r)$, by fixing any point on S_{r} as 0 , and going in the clockwise direction. Thus, a circular r-coloring for a weighted graph can be viewed as a mapping from the vertex set to $[0, r)$.

Theorem 1 Let $G=(V, A)$ be a finite symmetric weighted graph with rational weights. If there is a circular r-coloring for $G=(V, A)$ for some rational r, then there exists a circular r-coloring f for G such that $f(u)$ is rational for every $u \in V(G)$.

Proof. Let g be a circular r-coloring for $G=(V, A)$, where r is rational. Let q be a common denumerator of r and all the weights (expressed as fractions). Let $f(u)=\lfloor q g(u)\rfloor / q$, for every $u \in V(G)$. It is straightforward to verify that f is a circular r-coloring for $G=(V, A)$.

For any real t and any $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$, let $t \vec{d}=\left(t d_{1}, t d_{2}, \cdots, t d_{m}\right)$. The following is obvious.

Lemma 2 Let G be a simple un-weighted graph, and let $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$ be positive reals. Then $t \chi_{c}(G(\vec{d}))=\chi_{c}(G(t \vec{d}))$ holds for any real t.

By Lemma 2, finding the value of $\chi_{c}\left(G\left(d_{1}, d_{2}\right)\right)$ for any positive reals d_{1} and d_{2}, bounds to determining $\chi_{c}(G(d, 1))$ for any positive real d.

Theorem 3 Let G be a simple un-weighted graph, and let $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$ be positive integers. For any positive integer q,

$$
\chi_{c}(G(\vec{d}))=\min \{p / q: \text { there exists a circular }(p ; q \vec{d}) \text {-labeling for } G\}
$$

Proof. Since $G(\vec{d})$ is symmetric with integral weights, so $\chi_{c}(G(\vec{d}))$ is rational (cf. [9]). Let $\chi_{c}(G(\vec{d}))=p / q$. By the proof of Theorem 1 , there exists a circular (p / q)-coloring for $G(\vec{d})$ such that for every vertex $u, f(u)=x / q$ for some $x \in\{0,1,2, \cdots, p-1\}$. Define $f^{*}(u)=q f(u), u \in V(G)$. Then f^{*} is a circular $(p ; q \vec{d})$-labeling for G.

On the other hand, for any circular $(p ; q \vec{d})$-labeling f of G, the function g, defined by $g(u)=f(u) / q, u \in V(G)$, is a circular $(p / q)-$ coloring for $G(\vec{d})$.

We now prove (1.1).

Theorem 4 For any simple graph G, and any $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$ of positive integers, $\sigma_{\vec{d}}(G)=\left\lceil\chi_{c}(G(\vec{d}))\right\rceil$.

Proof. If f is a circular $(k ; \vec{d})$-labeling for G for some integer k, then f is also a circular k-coloring for $G(\vec{d})$. Hence $\sigma_{\vec{d}}(G) \geq\left\lceil\chi_{c}(G(\vec{d}))\right\rceil$, as $\sigma_{c}(G)$ is an integer.

Let f be a circular r-coloring for $G(\vec{d})$. Then f generates a circular $(\lceil r\rceil ; \vec{d})$-labeling f^{\prime} for G, defined as $f^{\prime}(v)=\lfloor f(v)\rfloor$ for every $v \in V(G)$. If $\operatorname{dist}_{G}(u, v)=i=1,2, \cdots, m$, then $|f(u)-f(v)|_{p} \geq d_{i}$, implying $\mid f^{\prime}(u)-$ $\left.f^{\prime}(v)\right|_{p} \geq d_{i}$.

The diameter of an un-weighted connected graph G, denoted by $\operatorname{diam}(G)$, is the maximum distance over all pairs of vertices in G. For any graph $G=(V, E)$, let G^{c} denote the complement of G. The path covering number (or linear arboricity) of a graph G, denoted by $p_{v}(G)$, is the smallest number of paths partitioning $V(G)$. The following was proved in [5].

Theorem 5 [5] Let G be an n-vertex graph. Then

$$
\sigma_{2,1}(G) \begin{cases}\leq n, & \text { if } G^{c} \text { is Hamiltonian; } \\ =n+p_{v}\left(G^{c}\right), & \text { if } G^{c} \text { is not Hamiltonian. }\end{cases}
$$

A special case of Theorem 5 is when the diameter of G is two, for which by Theorem 5, and by a discussion in [9] ((c) in Section 1), we have:

Corollary 6 Let G be an n-vertex graph with diameter two. Then

$$
\sigma_{2,1}(G)=\chi_{c}(G(2,1))= \begin{cases}n, & \text { if } G^{c} \text { is Hamiltonian; } \\ n+p_{v}\left(G^{c}\right), & \text { if } G^{c} \text { is not Hamiltonian }\end{cases}
$$

A special case to Corollary 6 is when G contains a universal vertex, in which $\sigma_{2,1}(G)=\chi_{c}(G(2,1))=n+p_{v}\left(G^{c}\right)$.

Let $G=(V, A)$ be a weighted graph. A subgraph $H=\left(V^{\prime}, A^{\prime}\right)$ of G is a weighted graph, with $V^{\prime} \subset V$, and $A^{\prime}(u, v) \leq A(u, v)$ for any $u, v \in V^{\prime}$. If $H\left(V^{\prime}, A^{\prime}\right)$ is a subgraph of $G=(V, A)$, then a circular p-coloring of $G=(V, A)$, when restricted to V^{\prime}, is a circular p-coloring for $H=\left(V^{\prime}, A^{\prime}\right)$. Hence, we have

Proposition 7 Let $G=(V, A)$ be a weighted graph, and $H=\left(V^{\prime}, A^{\prime}\right)$ a subgraph of G. Then $\chi_{c}(H) \leq \chi_{c}(G)$.

The following is obtained directly by a greedy (first-fit) algorithm.
Proposition 8 Let T be a tree with maximum degree Δ. Then $\chi_{c}(T(d, 1))=$ $2 d+\Delta-1$, for any positive real d.

Proposition 9 Let G be a graph with maximum degree Δ. Then $\chi_{c}(G(d, 1)) \geq$ $2 d+\Delta-1$, for any positive real d.

3 Cycles

For any cycle C_{n}, we denote the vertex set by $V\left(C_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, \cdots, v_{n-1}\right\}$, where $v_{i} \sim v_{i+1}$ for any i, and the sub-index is taken under modular n, for instance, $v_{n}=v_{0}$. For any two positive real numbers x and y, if $x=q y+r$ for some integer q and real $r, 0 \leq r<y$, then we write $r=x(\bmod y)$. Assume f is a circular p-coloring for $C_{n}(d, 1)$. For any two points, x and y, on $S_{p}=[0, p)$, we denote $[x, y]$ as the closed arc (interval) from x to y, in the clockwise direction. Similarly, $[a, b)$ denotes a half-open arc (interval) on S_{p}.

Note, by Prop. $9, \chi_{c}\left(C_{n}(d, 1)\right) \geq 2 d+1$, for any n and d.
Theorem 10 If $0<d \leq 1 / 2$, then

$$
\chi_{c}\left(C_{n}(d, 1)\right)= \begin{cases}2, & \text { if } n \equiv 0 \quad(\bmod 4) ; \\ 2+1 / k, & \text { if } n=4 k+2 \text { or } n=2 k+1 \text { for some } k \geq 1\end{cases}
$$

Proof. Assume n is even, $n=2 m$ for some $m \geq 2$. Then the subgraph induced by edges of weight 1 form two disjoint weighted m-cycles $C_{m}(1), A$ and B, where $V(A)=\left\{v_{2 i}: i=0,1,2, \cdots, m-1\right\}$ and $V(B)=\left\{v_{2 i+1}\right.$: $i=0,1, \cdots, m-1\}$, as subgraphs in $C_{n}(d, 1)$. By Prop. 7, $\chi_{c}\left(C_{n}(d, 1)\right) \geq$ $\chi_{c}\left(C_{m}(1)\right)$. It is known [10] that $\chi_{c}\left(C_{m}(1)\right)=2$, if m is even; and $\chi_{c}\left(C_{m}(1)\right)=$ $2+1 / m^{\prime}$, if $m=2 m^{\prime}+1$. Therefore, the lower bounds for even cycles are
obtained. To prove the upper bounds, we let $\chi_{c}\left(C_{m}(1)\right)=p$, and let f be a circular p-coloring for A. We then extend f to $C_{n}(d, 1)$ by letting $f\left(v_{2 i+1}\right)=f\left(v_{i}\right)+1 / 2(\bmod p)$. It is easy to check that f is a circular p-coloring for $C_{n}(d, 1)$, as $d \leq 1 / 2$. So, the upper bounds hold.

Assume $n=2 k+1$. Then all the edges of weight 1 in $C_{n}(d, 1)$ form an n cycle $C_{n}(1)$ as a subgraph. By Prop. 7 , we have $\chi_{c}\left(C_{n}(d, 1)\right) \geq \chi_{c}\left(C_{n}(1)\right)=$ $2+1 / k$. Moreover, since $d \leq 1 / 2$, it is easy to see that a circular $p-$ coloring for $C_{n}(1)$, with $p=2+1 / k$, is also a circular $p-\operatorname{coloring}$ for $C_{n}(d, 1)$.
Theorem 11 Let C_{n} be a cycle and let $d>1 / 2$ be real. If $n=2 k+1$ and $d \geq k$, then $\chi_{c}\left(C_{n}(d, 1)\right)=d(2+1 / k)=\frac{n d}{k}$.

Proof. Assume $n=2 k+1$ and $k \leq d$. Let $p=d(2+1 / k)$. The function f defined on $V\left(C_{n}\right)$ by $f\left(v_{i}\right)=i d(\bmod p)$ is a circular $p-$ coloring for $C_{n}(d, 1)$. Hence, $\chi_{c}\left(C_{n}(d, 1)\right) \leq d(2+1 / k)$. By Lemma 2, $\chi_{c}\left(C_{n}(d)\right)=$ $d \chi_{c}\left(C_{n}(1)\right)=d(2+1 / k)$. Hence $\chi_{c}\left(C_{n}(d, 1)\right) \geq \chi_{c}\left(C_{n}(d)\right)=d(2+1 / k)$.

Lemma 12 The in-equality $\chi_{c}\left(C_{n}(d, 1)\right) \leq 2 d+2$ holds for: 1) n is even and $d>1 / 2$; 2) $n=2 k+1 \geq 9$ and $1 / 2<d<k$; and 3) $n=7$ and $1 \leq d \leq 2$.

Proof. It suffices to find a circular $(2 d+2)$-coloring for $C_{n}(d, 1)$, for each case. We express such a coloring f by a difference sequence $\left(t_{1}, t_{2}, \cdots, t_{n}\right)$ of positive reals t_{i}, where $f\left(v_{0}\right)=0$ and $f\left(v_{i+1}\right)=f\left(v_{i}\right)+t_{i}(\bmod 2 d+2)$. The following claim follows from the definition.
Claim. Let $f: V\left(C_{n}\right) \rightarrow[0,2 d+2)$ be a function with $f\left(v_{0}\right)=0$, and $f\left(v_{i+1}\right)=f\left(v_{i}\right)+t_{i} \quad(\bmod 2 d+2), 0 \leq i \leq n-1$. Then f is a circular $(2 d+2)$-coloring for $C_{n}(d, 1)$ if the following hold for all i :
(a) $d \leq t_{i} \leq d+2$,
(b) $t_{i}+t_{i+1} \in[2 d, 2 d+1] \cup[1,2]$, and
(c) $t_{0}+t_{1}+t_{2}+\cdots+t_{n-1}=0 \quad(\bmod 2 d+2)$.

1) Assume n is even. Let f be defined by the sequence $\left(t_{0}, t_{1}, \cdots, t_{n-1}\right)$:

$$
(d+1, \underbrace{d+2, d+2, \cdots, d+2}_{\left(\frac{n}{2}-1\right) \text { terms }}, d+1, \underbrace{d, d, d, \cdots, d}_{\left(\frac{n}{2}-1\right) \text { terms }}) .
$$

By Claim, it is easy to check that f is a circular $(2 d+2)-$ coloring for $C_{n}(d, 1)$.
2) Let $n=2 k+1 \geq 9$ and $d<k$. Write $2 k-d=2 m+m^{\prime}+r^{\prime}$, for some integers m, m^{\prime}, where $m^{\prime} \in\{0,1\}$, and some real $r^{\prime}, 0 \leq r^{\prime}<1$. Note, $m \geq 2$, as $k \geq 4$. Let $\left(t_{0}, t_{1}, t_{2}, \cdots, t_{n}\right)$ be:

$$
(d+1, \underbrace{d+2, d+2, \cdots, d+2}_{m-1 \text { terms }}, d+1, d, d+m^{\prime}, d, d+r^{\prime}, \underbrace{d, d, \cdots \cdots \cdots \cdots, d}_{2 k-m-4 \text { terms }}) .
$$

Because $k \geq 4$, it is straightforward to check that (a) - (c) in the Claim are satisfied. We leave the details to the reader.
3) Assume $n=7$ and $1 \leq d \leq 2$. Let $r^{\prime}=2-d$. Then $0 \leq r^{\prime} \leq 1$. Let $f: V\left(C_{7}\right) \rightarrow[0,2 d+2)$ be defined by the difference sequence: $(d, d+1, d+$ $\left.2, d+1, d, d+r^{\prime}, d\right)$. It is easy to check that f is a circular $(2 d+2)-$ coloring for $C_{7}(d, 1)$.

Lemma 13 Assume $\chi_{c}\left(C_{n}(d, 1)\right)=p=2 d+1+r$ for some real $0 \leq r<1$. Let f be a circular $p-$ coloring for $C_{n}(d, 1)$ with $f\left(v_{0}\right)=0$ and $f\left(v_{1}\right) \leq p / 2$. Assume $f\left(v_{i+1}\right)=f\left(v_{i}\right)+d+t_{i}(\bmod p)$ for $i=0,1, \cdots, n-1$. Let $t=$ $t_{0}+t_{1}+\cdots+t_{n-1}$. Then the following hold:
(1) $0 \leq t_{i}<(1+r) / 2$ and $t_{i}+t_{i+1} \leq r$, for $i=0,1, \cdots, n-1$.
(2) $0 \leq t \leq \frac{n r}{2}$ and $n d+t=0(\bmod p)$.

Proof. Let f be a circular p-labeling for $C_{n}(d, 1)$, where $p=2 d+1+r$, $0 \leq r<1, f\left(v_{0}\right)=0$, and $f\left(v_{1}\right) \leq p / 2$. Then $f\left(v_{1}\right)<p / 2$. For if $f\left(v_{1}\right)=$ $p / 2$, then it is impossible to color v_{2}, as $v_{1} \sim v_{2}$, $\operatorname{dist}\left(v_{2}, v_{0}\right)=2$, and $p / 2<d+1$. Hence, $d \leq l\left(f\left(v_{0}\right), f\left(v_{1}\right)\right)<p / 2$ and $0 \leq t_{0}<(1+r) / 2$. Also, this implies that $d \leq l\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)<p / 2$. For if $l\left(f\left(v_{1}\right), f\left(v_{2}\right)\right) \geq p / 2$, then as $\operatorname{dist}\left(v_{2}, v_{0}\right)=2$ and $\operatorname{dist}\left(v_{2}, v_{1}\right)=1$, we must have $1 \leq f\left(v_{2}\right) \leq f\left(v_{1}\right)-d$, which is impossible as $f\left(v_{1}\right)<p / 2<d+1$. Therefore, we conclude that $f\left(v_{2}\right) \leq p-1=2 d+r$. Indeed, this can be extended to that $f\left(v_{i+2}\right) \leq$ $f\left(v_{i}\right)+2 d+r \quad(\bmod p)$ for any i. Hence, $t_{i}+t_{i+1} \leq r$. This proves (1).

Because $v_{0}=v_{n}$, by (1), we have $f\left(v_{0}\right)=f\left(v_{n}\right)=f\left(v_{0}\right)+n d+t(\bmod p)$, so $n d+t=0 \quad(\bmod p)$. If n is even, (2) follows by (1) immediately. If n is add, then fix a smallest t_{j} among all t_{i} 's (so $t_{j} \leq r / 2$), and then pair up the rest of t_{i} 's by $t_{i}+t_{i+1} \leq r$.

Let f be a circular p-coloring for a symmetric weighted graph $G(V, A)$. An edge (u, v) is said to be tight if $|f(u)-f(v)|_{p}=a_{u v}$. A cycle $C=$ $\left(u_{1}, u_{2}, \cdots, u_{m}\right)$ is tight if all its edges $\left(u_{1}, u_{2}\right),\left(u_{2}, u_{3}\right), \cdots,\left(u_{m}, u_{1}\right)$ are tight. If C is a tight cycle, then the weight of $C, a(C)=a_{u_{1} u_{2}}+a_{u_{2} u_{3}}+\cdots+a_{u_{m} u_{1}}$ is an integral multiple of p, the number $w(C)=\frac{a(C)}{p}$ is called the winding number of C. Mohar [9] proved that if $p=\chi_{c}(G)$, then there is a circular p-coloring of G which has a tight cycle.

Assume $n=2 k+1$. For any $1 / 2<d<k$, let $z(d)=\left\lfloor\frac{n d}{2 d+1}\right\rfloor=k-h$ for some integer h. As $d<k$, it follows that $h \geq 1$. Because $n d=(2 k+1) d=$ $(2 d+1)(k-h)+2 d h+d-k+h$, so $0 \leq 2 d h+d-k+h<2 d+1$, implying

$$
\begin{equation*}
\frac{k-h}{2 h+1} \leq d<\frac{k-h+1}{2 h-1} \tag{3.1}
\end{equation*}
$$

Lemma 14 Let $n=2 k+1$. For any d,

$$
\chi_{c}\left(C_{n}(d, 1)\right) \leq \min \left\{\frac{n d}{z(d)}, \frac{n}{2 h-1}\right\} .
$$

Proof. Let $p=\frac{n d}{z(d)}$. Then $f\left(v_{i}\right)=i d \bmod p$ is a circular $p-$ coloring for $C_{n}(d, 1)$. Let $p^{\prime}=\frac{n}{2 h-1}$. By (3.1), $d<\frac{k-h+1}{2 h-1}$, so $f^{\prime}\left(v_{i}\right)=\left(\frac{p^{\prime}-1}{2}\right) i \bmod p^{\prime}$ is a circular p^{\prime}-coloring for $C_{n}(d, 1)$. Note, $\left(v_{0}, v_{1}, v_{2}, \cdots, v_{n-1}\right)$ is a tight cycle in f, and $\left(v_{0}, v_{2}, v_{4}, \cdots, v_{n-1}, v_{1}, v_{2}, \cdots, v_{n-1}\right)$ is a tight cycle in f^{\prime}, with winding numbers, respectively, $z(d)$ and $2 h-1$.

Theorem 15 Let $n=2 k+1$. If $\chi_{c}\left(C_{n}(d, 1)\right)<2 d+2$, then

$$
\chi_{c}\left(C_{n}(d, 1)\right)=\min \left\{\frac{n d}{z(d)}, \frac{n}{2 h-1}\right\} .
$$

Proof. Assume $\chi_{c}\left(C_{n}(d, 1)\right)=p=2 d+1+r$, with $0 \leq r<1$. By Lemma 14, it suffices to show that $p \geq \min \left\{\frac{n d}{z(d)}, \frac{n}{2 h-1}\right\}$. Let f be a circular p-coloring for $C_{n}(d, 1)$, with $f\left(v_{0}\right)=0$. Without loss of generality (by symmetry), assume $f\left(v_{1}\right) \leq p / 2$. By Lemma 13, $f\left(v_{i+1}\right)=f\left(v_{i}\right)+d+t_{i}$ and $n d+t=0$ $(\bmod p)$, where $t=t_{0}+t_{1}+\cdots t_{n-2}$. Hence,

$$
\begin{equation*}
n d+t=(2 k+1) d+t=(2 d+1+r) x, \text { for some integer } x . \tag{3.2}
\end{equation*}
$$

If $x \leq z(d)$, then $\chi_{c}\left(C_{n}(d, 1)\right)=2 d+1+r=\frac{n d+t}{x} \geq \frac{n d}{z(d)}$, and we are done. Assume $x \geq z(d)+1$. Because $t \leq \frac{n r}{2}$, by (3.2), we have $t=(2 d+1+$ $r) x-(2 k+1) d \leq \frac{n r}{2}$. This implies that $r \geq \frac{(2 d+1) x-(2 k+1) d}{k-1 / 2-x}$. By some easy calculation, we get $\chi_{c}\left(C_{n}(d, 1)\right)=2 d+1+r \geq \frac{n}{2 h-1}$.

For $n=2 k+1 \geq 9$, by Theorems 10, 11, 15, and Lemma 12, we express the value of $\chi_{c}\left(C_{2 k+1}(d, 1)\right)$ as a continuous, piecewise linear function of d :

Corollary 16 Let $n=2 k+1 \geq 9$. For any $d>1 / 2$, let $z(d)=\left\lfloor\frac{n d}{2 d+1}\right\rfloor$. Then

$$
\chi_{c}\left(C_{n}(d, 1)\right)= \begin{cases}n, & \text { if } d \in[k-(1 / 2), k) ; \\ 2 d+2, & \text { if } d \in\left[\frac{2 k-2}{3}, k-(1 / 2)\right) ; \\ \frac{n}{2 h-1}, & \text { if } d \in\left[\frac{k-h}{2 h-1}, \frac{k-h+1}{2 h-1}\right), h=2,3, \cdots,\left\lfloor\frac{k+1}{2}\right\rfloor ; \\ \frac{n}{k}, & \text { if } d \in(0,1 / 2] ; \\ \frac{n d}{z(d)}, & \text { otherwise. }\end{cases}
$$

Proof. Let $n=2 k+1$. If $d \geq k$, then $z(d)=k$. So, the result for $d \geq k$ and $d \leq 1 / 2$ follows by Theorems 11 and 10 , respectively. In the following, assume $1 / 2<d<k$.

Let $z(d)=\left\lfloor\frac{n d}{2 d+1}\right\rfloor=k-h$. Assume $\chi_{c}\left(C_{n}(d, 1)\right)=p=2 d+1+r$ for some $0 \leq r<1$. By Theorem 15, (a) $2 d+1+r=\frac{n}{2 h-1}$ or (b) $2 d+1+r=\frac{n d}{z(d)}$ holds. As $r<1$, if (a) holds, then $d>\frac{n}{2(2 h-1)}-1$; if (b) holds, then $d<\frac{2(k-h)}{2 h+1}$. Assume $h=1$. By (3.1), one gets:

$$
\chi_{c}\left(C_{n}(d, 1)\right)= \begin{cases}n, & \text { if } d \in(k-(1 / 2), k) ; \\ \frac{n d}{z(d)}, & \text { if } d \in\left[\frac{k-1}{3}, \frac{2(k-1)}{3}\right)\end{cases}
$$

By Lemma $12, \chi_{c}\left(C_{n}(d, 1)\right)=2 d+2$, if $d \in\left[\frac{2(k-1)}{3}, k-(1 / 2)\right]$. If $h \geq 2$, functions (a) and (b) intersect at $d=\frac{k-h}{2 h-1}$. Moreover, (a) is greater than (b), if $\frac{k-h}{2 h-1}<d<\frac{k-h+1}{2 h-1}$. Note that, as $h \geq 2$, we have $\frac{2(k-h)}{2 h+1} \geq \frac{k-h+1}{2 h-1}$ and $\frac{n}{2(2 h-1)}-1 \leq \frac{k-h}{2 h-1}$. By (3.1), the result follows.

Theorem 17

$$
\chi_{c}\left(C_{5}(d, 1)\right)= \begin{cases}(5 / 2) d, & \text { if } d \geq 2 \\ 5, & \text { if } d \in[1,2) \\ 5 d, & \text { if } d \in(1 / 2,1) \\ 5 / 2, & \text { if } 0<d \leq 1 / 2\end{cases}
$$

Proof. Note, $\chi_{c}\left(C_{5}(d, 1)\right) \geq \min \{5 d, 5\}$, as $C_{5}(d, 1)$ is a complete graph, so any circular coloring is one-to-one, and the separation between any two consecutive labels must be at least $\min \{d, 1\}$. Hence, the result follows by Theorems 10 and 11, and the circular 5 -coloring ($0,1,2,3,4$) and the circular $5 d$-coloring $(0, d, 2 d, 3 d, 4 d)$ for $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$, when $d \in[1,2)$ and $d \in$ $(1 / 2,1)$, respectively.

Lemma 18 If $2 \leq d \leq 3$ and $\chi_{c}\left(C_{7}(d, 1)\right)<\min \{7,3 d\}$, then

$$
\chi_{c}\left(C_{7}(d, 1)\right) \geq(5 / 2) d+1
$$

Proof. Assume $2 \leq d \leq 3$ and $\chi_{c}\left(C_{7}(d, 1)\right)=p<\min \{7,3 d\}$. Let f be a circular p-coloring for $C_{7}(d, 1)$ with $f\left(v_{0}\right)=0$. For any i, because $p<3 d$, so $1 \leq\left|f\left(v_{i}\right)-f\left(v_{i+2}\right)\right|_{p}<d$, implying one of the following holds:

$$
\begin{align*}
& \left|f\left(v_{i+2}\right)-f\left(v_{i-2}\right)\right|_{p} \geq 2, \text { or } \tag{3.3}\\
& \left|f\left(v_{i+2}\right)-f\left(v_{i-2}\right)\right|_{p}<d-1 \tag{3.4}
\end{align*}
$$

Assume for all $i,(3.4)$ holds. So, $\left|f\left(v_{2}\right)-f\left(v_{5}\right)\right|_{p}<d-1$. Without loss of generality, we assume $f\left(v_{2}\right), f\left(v_{5}\right) \in[1, d)$. By (3.4), $\left|f\left(v_{6}\right)-f\left(v_{2}\right)\right|_{p}<d-1$ and $\left|f\left(v_{5}\right)-f\left(v_{1}\right)\right|_{p}<d-1$, which is impossible as $v_{6} \sim v_{0}$ and $v_{1} \sim v_{0}$.

Hence, there exists some i such that (3.3) holds. By symmetry, we may assume that $i=0,1 \leq f\left(v_{2}\right)<d$ and $p-d<f\left(v_{5}\right) \leq p-1$. Then
$f\left(v_{1}\right), f\left(v_{6}\right) \in\left(f\left(v_{2}\right), f\left(v_{5}\right)\right)$. If $f\left(v_{1}\right)<f\left(v_{6}\right)$, then the ordering of the labels of $\left(v_{0}, v_{2}, v_{1}, v_{6}, v_{5}\right)$ on S_{p} gives $p \geq 2 d+3 \geq 7$, a contradiction. (Using only the sub-index i of each v_{i}, we abbreviate the above contradiction by $(0,2,1,6,5) \Rightarrow 2 d+3$.) Hence, $f\left(v_{6}\right)<f\left(v_{1}\right)$. So, the labels $0=f\left(v_{0}\right)<f\left(v_{2}\right)<f\left(v_{6}\right)<f\left(v_{1}\right)<f\left(v_{5}\right)$ divide S_{p} into five intervals, $I_{1}=\left(f\left(v_{0}\right), f\left(v_{2}\right)\right), I_{2}=\left(f\left(v_{2}\right), f\left(v_{6}\right)\right), \cdots$, and $I_{5}=\left(f\left(v_{5}\right), f\left(v_{0}\right)\right)$. By definition, $f\left(v_{4}\right) \notin I_{5}$ and $f\left(v_{3}\right) \notin I_{1}$.

Assume $f\left(v_{4}\right) \in I_{2}$. Because $\left|f\left(v_{4}\right)-f\left(v_{2}\right)\right|_{p}<d,\left|f\left(v_{6}\right)-f\left(v_{4}\right)\right|_{p}<d$, and $\left|f\left(v_{3}\right)-f\left(v_{4}\right)\right|_{p} \geq d$, so $f\left(v_{3}\right) \notin I_{2}$. If $f\left(v_{3}\right) \in I_{3}$, then $(0,2,4,3,1) \Rightarrow$ $2 d+3$. If $f\left(v_{3}\right) \in I_{4}$, then $(0,2,4,6,1,3,5) \Rightarrow 7$. If $f\left(v_{3}\right) \in I_{5}$, then $(0,2,4,6,1,5,3) \Rightarrow 7$. Therefore $f\left(v_{4}\right) \notin I_{2}$. Symmetrically and similarly, one can show that $f\left(v_{3}\right), f\left(v_{4}\right) \notin I_{4}$ and $f\left(v_{3}\right) \notin I_{2}$. Note, it is impossible that $f\left(v_{3}\right), f\left(v_{4}\right) \in I_{3}$, as $l\left(I_{3}\right)<d$.

By symmetry, it suffices to consider two cases: (1) $f\left(v_{3}\right) \in I_{5}$ and $f\left(v_{4}\right) \in$ I_{1}; and (2) $f\left(v_{3}\right) \in I_{3}$ and $f\left(v_{4}\right) \in I_{1}$. Indeed, they are "identical." In (1) and (2), the orderings of the labels on S_{p} are, respectively (starting at v_{0} and v_{6}, respectively, and using only the sub-index i for each $\left.v_{i}\right),(0,4,2,6,1,5,3)$ and ($6,3,1,5,0,4,2$). By increasing each number in the latter case by 1 , they become identical.

It suffices to consider (2). Let $l\left(f\left(v_{0}\right), f\left(v_{4}\right)\right)=x_{1}$ and $l\left(f\left(v_{1}\right), f\left(v_{5}\right)\right)=$ x_{2}. Assume $x_{2} \geq x_{1}$ (the proof for $x_{2} \leq x_{1}$ is similar). Set $l\left(f\left(v_{4}\right), f\left(v_{2}\right)\right)=$ $1+t_{1}, l\left(f\left(v_{2}\right), f\left(v_{3}\right)\right)=d+t_{2}, l\left(f\left(v_{3}\right), f\left(v_{1}\right)\right)=1+t_{3}, l\left(f\left(v_{5}\right), f\left(v_{4}\right)\right)=d+t_{4}$, for some $t_{1}, t_{2}, t_{3}, t_{4} \geq 0$. Then, $p=2 d+2+x_{2}+t_{1}+t_{2}+t_{3}+t_{4}$.

Because $v_{0} \sim v_{6}$, we have $x_{1}+1+t_{1}+l\left(f\left(v_{2}\right), f\left(v_{6}\right)\right) \geq d$, implying $l\left(f\left(v_{2}\right), f\left(v_{6}\right)\right) \geq d-x_{1}-1-t_{1}$. Similarly, because $v_{6} \sim v_{5}$, we have $l\left(f\left(v_{6}\right), f\left(v_{3}\right)\right) \geq d-x_{2}-1-t_{3}$. Therefore, $l\left(f\left(v_{2}\right), f\left(v_{3}\right)\right)=d+t_{2} \geq$ $2 d-2-x_{1}-x_{2}-t_{1}-t_{3}$. Because $x_{2} \geq x_{1}$, we conclude that $x_{2} \geq(d-2) / 2$, so $p \geq(5 / 2) d+1$.

Theorem 19

$$
\chi_{c}\left(C_{7}(d, 1)\right)= \begin{cases}(7 / 3) d, & \text { if } d \geq 3 \\ 7, & \text { if } 12 / 5 \leq d \leq 3 \\ (5 / 2) d+1, & \text { if } 2 \leq d \leq 12 / 5 \\ 2 d+2, & \text { if } 4 / 3 \leq d \leq 2 \\ (7 / 2) d, & \text { if } 2 / 3 \leq d \leq 4 / 3 \\ 7 / 3, & \text { if } 0<d \leq 2 / 3\end{cases}
$$

Proof. The result follows by Lemmas 12, 18, Theorems 10, 11, 15, and the circular $\left(\frac{5}{2} d+1\right)$-coloring $\left(0, d, 2 d, \frac{d}{2}-1, \frac{3 d}{2}, \frac{d}{2}, \frac{3 d}{2}+1\right)$ for $C_{7}(d, 1)$, when $2 \leq d \leq 12 / 5$.

Similar to Theorem 15 and Corollary 16, we obtain the following result for even cycles. We leave the details to the reader.

Theorem 20 Let $n=2 k$, and for any real $d>1 / 2$, let $z(d)=\left\lfloor\frac{n d}{2 d+1}\right\rfloor=$ $k-h$. Then $\chi_{c}\left(C_{n}(d, 1)\right)=\min \left\{\frac{n d}{z(d)}, \frac{k}{h-1}, 2 d+2\right\}$. Or equivalently,

$$
\chi_{c}\left(C_{n}(d, 1)\right)= \begin{cases}2 d+2, & \text { if } d \geq k-1 ; \\ \frac{k}{m}, & \text { if } d \in\left[\frac{k-m-1}{2 m}, \frac{k-m}{2 m}\right), m=1,2, \cdots,\left\lfloor\frac{k-1}{2}\right\rfloor ; \\ 2, & \text { if } k \text { is even and } d \in(0,1 / 2] ; \\ \frac{2 k}{k-1}, & \text { if } k \text { is odd and } d \in(0,1 / 2] ; \\ \frac{n d}{z(d)}, & \text { otherwise. }\end{cases}
$$

According to Lemma 2, we have determined the value of $\chi_{c}\left(C_{n}\left(d_{1}, d_{2}\right)\right)$ for any positive reals d_{1} and d_{2}. A special case of interest is that when $d_{1}=d \times d_{2}$ for some integer d, then it bounds to find the value of $\chi_{c}\left(C_{n}(d, 1)\right)$. By Theorems 16, 17, 19, 20, and Corollary 16, we have:

Corollary 21 Let d and n be positive integers, $n \geq 3$. Then

$$
\chi_{c}\left(C_{n}(d, 1)\right)=\min \left\{2 d+2, \frac{n d}{\left\lfloor\frac{n d}{2 d+1}\right\rfloor}\right\}
$$

Corollary 21 implies that the value of $\chi_{c}\left(C_{n}(d, 1)\right)$, when d is an integer, can be as close as possible to the lower bound $\left\lceil\chi_{c}\left(C_{n}(d, 1)\right)\right\rceil-1$ (cf. (1.1)).

Note that, if $\chi_{c}\left(C_{n}(d, 1)\right)=p<2 d+2$, then there exists a circular p-coloring for $C_{n}(d, 1)$ with a tight cycle that has all edges of the same weight. (If n is odd, by the proof of Lemma $14,\left(v_{0}, v_{1}, v_{2}, \cdots, v_{n-1}\right)$ or $\left(v_{0}, v_{2}, v_{4}, \cdots, v_{n-1}, v_{1}, v_{3}, \cdots, v_{n-1}\right)$ is a tight cycle; if n is even, then $\left(v_{0}, v_{1}\right.$, $\left.v_{2}, \cdots, v_{n-1}\right)$ or ($v_{0}, v_{2}, v_{4}, \cdots, v_{n-2}$) is a tight cycle.) This is not the case, however, when $\chi_{c}\left(C_{n}(d, 1)\right) \geq 2 d+2$. For instance, consider $C_{7}(d, 1)$ with $2 \leq d \leq 12 / 5$, it is impossible to get a circular p-coloring, $p=(5 / 2) d+1$, with a tight cycle that has all edges of the same weight. Indeed, one can get a circular p-coloring with the tight cycle $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{5}, v_{4}, v_{6}\right)$ of winding number 2.

References

[1] G. Chang and D. Kuo, The $L(2,1)$-labeling problem on graphs, SIAM J. Disc. Math., 9 (1996), 309 - 316.
[2] J. Georges, D. Mauro, and M. Whittlesey, Relating path covering to vertex labellings with a condition at distance two, Disc. Math., 135 (1994), 103-111.
[3] J. R. Griggs and R. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Disc. Math. 5(1992), 586 - 595.
[4] J. van den Heuvel, R. A. Leese and M. A. Shepherd, Graph labelling and radio channel assignment, J. Graph Theory, 29 (1998), 263 - 283.
[5] D. Liu, Hamiltonicity and circular distance two labelings, Disc. Math., 232 (2001), 163 - 169.
[6] D. Liu, Sizes of graphs with fixed orders and spans for circular distance two labeling, Ars Combinatoria, 67 (2003), 125 - 139.
[7] D. Liu and X. Zhu, Circular distance two labeling and circular chromatic number, Ars Combinatoria, 69 (2003), 177 - 183.
[8] D. Liu and X. Zhu, Circular distance two labeling and the λ-number for outerplanar graphs, SIAM J. Disc. Math., to appear.
[9] B. Mohar, Circular colorings of edge weighted graphs, J. Graph Theory, 43 (2003), 107 - 116.
[10] X. Zhu, Circular chromatic number: A survey, Disc. Math., 229 (2001), 371-410.

[^0]: *Supported in part by the National Science Foundation under grant DMS 0302456.

