Circular Coloring for Graphs with Distance Constraints *

Daphne Der-Fen Liu Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032, USA Email: dliu@calstatela.edu

June 4, 2004

Abstract

Let G = (V, E) be a simple un-weighted graph, and let $\overrightarrow{d} = (d_1, d_2, \dots, d_m)$ be a sequence of positive reals. For a positive real r, let S_r denote the circle on R^2 centered at the origin with circumference r. A circular r-coloring for G with distance constraint \overrightarrow{d} is a mapping $f: V(G) \to S_r$ such that $|f(u) - f(v)|_r \ge d_i$, whenever the distance between u and v in G is i (where $|x - y|_r$ is the length of a shorter arc between x and y on S_r). The circular chromatic number of G with distance constraint \overrightarrow{d} , denoted by $\chi_c(G(\overrightarrow{d}))$, is the infimum of r such that there exists a circular r-coloring for G with distance constraints \overrightarrow{d} . For any cycle C_n , $n \ge 3$, we determine the value of $\chi(C_n(d, 1))$, expressed as a continuous, piecewise linear function of d, d > 0. In addition, we discuss relations between circular coloring (for weighted graphs) and integral distance labeling.

1991 Mathematics Subject Classification. 05C15

Keywords. circular chromatic number, circular distance two labeling, distance labeling.

^{*}Supported in part by the National Science Foundation under grant DMS 0302456.

1 Introduction

Introduced by Mohar [9], circular coloring for edge weighted graphs is a generalization of conventional circular coloring for simple graphs. An edge weighted graph with vertex set V is a pair G = (V, A), where $A : V \times V \rightarrow R^+ \cup \{0\}$ is a weight assignment. For each $(u, v) \in V \times V$, we write $a_{uv} = A(u, v)$. For a positive real r, denote $S_r \subset R^2$ the circle with circumference r centered at the origin of R^2 . For any $x, y \in S_r$, let l(x, y) denote the arc length from x to y, in the clockwise direction. A circular r-coloring of G = (V, A) is a function, $c : V \to S_r$, such that $l(c(u), c(v)) \ge a_{uv}$ for every $(u, v) \in V \times V$. The circular chromatic number $\chi_c(G)$ of an edge-weighted graph G = (V, A) is the infimum of all real numbers r for which there exists a circular r-coloring of G.

The weights are weakly symmetric if the following is satisfied: For any $u, v \in V$, if $a_{uv} = 0$, then $a_{vu} = 0$. The weights are called symmetric if $a_{uv} = a_{vu}$, for every $u, v \in V$. Mohar [9] proved that the infimum in the above definition of $\chi_c(G)$ for edge weighted graphs can be replaced by minimum, if the weights are weakly symmetric.

We investigate circular coloring for weighted graphs with distance constraints. For any $u, v \in V$, let $\operatorname{dist}_G(u, v)$ denote the *distance* (length of a shortest path) between u and v in G; when G is clear in the context, we simply denote $\operatorname{dist}_G(u, v)$ by $\operatorname{dist}(u, v)$. Let $\vec{d} = (d_1, d_2, \dots, d_m)$ be a sequence of positive reals. The graph G with distance constraint \vec{d} , denoted by $G(d_1, d_2, \dots, d_m) = G(\vec{d}) = (V, A)$, is a symmetric edge weighted graph, defined as follows. For each $u, v \in V(G)$, let $a_{uv} = a_{vu} = d_i$, if $\operatorname{dist}_G(u, v) = i$ where $i = 1, 2, \dots, m$; otherwise $a_{uv} = 0$. Following this notion, the conventional circular chromatic number $\chi_c(G)$ of a simple un-weighted graph G = (V, E) is the case when $\vec{d} = (1)$, that is, $\chi_c(G) = \chi_c(G(1))$; and the conventional circular chromatic number of G^2 , the square of G (by adding edges between vertices of distance two apart), has $\chi_c(G^2) = \chi_c(G(1, 1))$.

Section 3 of this article is devoted to complete solutions of $\chi_c(C_n(d, 1))$,

for any cycle C_n and any d > 0. For any $n \ge 3$, we give the formula of $\chi_c(C_n(d, 1))$, expressed as a continuous, piecewise linear function of d.

Let $\vec{d} = (d_1, d_2, \dots, d_m)$ be positive reals. For a simple un-weighted graph G = (V, E), circular coloring for $G(\vec{d})$ is closely related to integral circular distance labeling. For a positive integer k and a graph G = (V, E), a *circular* $(k; \vec{d})$ -labeling of G is a function, $f : V(G) \to \{0, 1, 2, \dots, k-1\}$, such that the following is satisfied:

$$|f(x) - f(y)|_k \ge d_i$$
, if $\operatorname{dist}_G(x, y) = i$ and $i = 1, 2, \cdots, m$,

where $|x - y|_k = \min\{|x - y|, k - |x - y|\}$. The $\sigma(d_1, d_2, \dots, d_m)$ -number (or $\sigma_{\vec{d}}$ -number) of an un-weighted simple graph G, denoted by $\sigma_{\vec{d}}(G)$, is the smallest integer k such that G admits a circular $(k; \vec{d})$ -labeling. The special case when $\vec{d} = (d_1, d_2)$ is also known as the *circular distance two labeling*; the values of $\sigma_{d_1, d_2}(G)$ for some families of graphs have been studied in [4, 5, 6, 7, 8].

In the next section, we establish the following relation for any simple graph G and any $\vec{d} = (d_1, d_2, \dots, d_m)$ of positive integers d_i :

$$\sigma_{\vec{d}}(G) - 1 < \chi_c(G(\vec{d})) \le \sigma_{\vec{d}}(G).$$

$$(1.1)$$

The upper bound in (1.1) is sharp for some graphs. The result on the values of $\chi_c(C_n(d, 1))$ for cycles obtained in this article implies that the lower bound in (1.1) is sharp, in the sense that there exist graphs G such that the values of $\chi_c(G(\vec{d}))$ approach to the lower bound, as closely as possible.

2 Basic Properties

For any reals a, b with $a \leq b$, we denote the half-open interval [a, b) by the set of all reals $x, a \leq x < b$. For any real r, we regard S_r as [0, r), by fixing any point on S_r as 0, and going in the clockwise direction. Thus, a circular r-coloring for a weighted graph can be viewed as a mapping from the vertex set to [0, r).

Theorem 1 Let G = (V, A) be a finite symmetric weighted graph with rational weights. If there is a circular r-coloring for G = (V, A) for some rational r, then there exists a circular r-coloring f for G such that f(u) is rational for every $u \in V(G)$.

Proof. Let g be a circular r-coloring for G = (V, A), where r is rational. Let q be a common denumerator of r and all the weights (expressed as fractions). Let $f(u) = \lfloor qg(u) \rfloor / q$, for every $u \in V(G)$. It is straightforward to verify that f is a circular r-coloring for G = (V, A).

For any real t and any $\vec{d} = (d_1, d_2, \dots, d_m)$, let $t\vec{d} = (td_1, td_2, \dots, td_m)$. The following is obvious.

Lemma 2 Let G be a simple un-weighted graph, and let $\vec{d} = (d_1, d_2, \dots, d_m)$ be positive reals. Then $t \chi_c(G(\vec{d})) = \chi_c(G(t\vec{d}))$ holds for any real t.

By Lemma 2, finding the value of $\chi_c(G(d_1, d_2))$ for any positive reals d_1 and d_2 , bounds to determining $\chi_c(G(d, 1))$ for any positive real d.

Theorem 3 Let G be a simple un-weighted graph, and let $\vec{d} = (d_1, d_2, \dots, d_m)$ be positive integers. For any positive integer q,

 $\chi_c(G(\vec{d})) = \min\{p/q : there \ exists \ a \ circular \ (p; q\vec{d}) - labeling \ for \ G\}.$

Proof. Since $G(\vec{d})$ is symmetric with integral weights, so $\chi_c(G(\vec{d}))$ is rational (cf. [9]). Let $\chi_c(G(\vec{d})) = p/q$. By the proof of Theorem 1, there exists a circular (p/q)-coloring for $G(\vec{d})$ such that for every vertex u, f(u) = x/q for some $x \in \{0, 1, 2, \dots, p-1\}$. Define $f^*(u) = qf(u), u \in V(G)$. Then f^* is a circular $(p; q\vec{d})$ -labeling for G.

On the other hand, for any circular $(p; q\bar{d})$ -labeling f of G, the function g, defined by g(u) = f(u)/q, $u \in V(G)$, is a circular (p/q)-coloring for $G(\vec{d})$.

We now prove (1.1).

Theorem 4 For any simple graph G, and any $\vec{d} = (d_1, d_2, \dots, d_m)$ of positive integers, $\sigma_{\vec{d}}(G) = \lceil \chi_c(G(\vec{d})) \rceil$.

Proof. If f is a circular $(k; \vec{d})$ -labeling for G for some integer k, then f is also a circular k-coloring for $G(\vec{d})$. Hence $\sigma_{\vec{d}}(G) \geq \lceil \chi_c(G(\vec{d})) \rceil$, as $\sigma_c(G)$ is an integer.

Let f be a circular r-coloring for $G(\vec{d})$. Then f generates a circular $(\lceil r \rceil; \vec{d})$ -labeling f' for G, defined as $f'(v) = \lfloor f(v) \rfloor$ for every $v \in V(G)$. If $\operatorname{dist}_G(u, v) = i = 1, 2, \cdots, m$, then $|f(u) - f(v)|_p \ge d_i$, implying $|f'(u) - f'(v)|_p \ge d_i$.

The diameter of an un-weighted connected graph G, denoted by diam(G), is the maximum distance over all pairs of vertices in G. For any graph G = (V, E), let G^c denote the *complement* of G. The *path covering number* (or *linear arboricity*) of a graph G, denoted by $p_v(G)$, is the smallest number of paths partitioning V(G). The following was proved in [5].

Theorem 5 [5] Let G be an n-vertex graph. Then

 $\sigma_{2,1}(G) \left\{ \begin{array}{ll} \leq n, & \text{if } G^c \text{ is Hamiltonian;} \\ = n + p_v(G^c), & \text{if } G^c \text{ is not Hamiltonian.} \end{array} \right.$

A special case of Theorem 5 is when the diameter of G is two, for which by Theorem 5, and by a discussion in [9] ((c) in Section 1), we have:

Corollary 6 Let G be an n-vertex graph with diameter two. Then

$$\sigma_{2,1}(G) = \chi_c(G(2,1)) = \begin{cases} n, & \text{if } G^c \text{ is Hamiltonian};\\ n + p_v(G^c), & \text{if } G^c \text{ is not Hamiltonian} \end{cases}$$

A special case to Corollary 6 is when G contains a universal vertex, in which $\sigma_{2,1}(G) = \chi_c(G(2,1)) = n + p_v(G^c)$.

Let G = (V, A) be a weighted graph. A subgraph H = (V', A') of G is a weighted graph, with $V' \subset V$, and $A'(u, v) \leq A(u, v)$ for any $u, v \in V'$. If H(V', A') is a subgraph of G = (V, A), then a circular *p*-coloring of G = (V, A), when restricted to V', is a circular *p*-coloring for H = (V', A'). Hence, we have **Proposition 7** Let G = (V, A) be a weighted graph, and H = (V', A') a subgraph of G. Then $\chi_c(H) \leq \chi_c(G)$.

The following is obtained directly by a greedy (first-fit) algorithm.

Proposition 8 Let T be a tree with maximum degree Δ . Then $\chi_c(T(d, 1)) = 2d + \Delta - 1$, for any positive real d.

Proposition 9 Let G be a graph with maximum degree Δ . Then $\chi_c(G(d, 1)) \geq 2d + \Delta - 1$, for any positive real d.

3 Cycles

For any cycle C_n , we denote the vertex set by $V(C_n) = \{v_0, v_1, v_2, \dots, v_{n-1}\}$, where $v_i \sim v_{i+1}$ for any *i*, and the sub-index is taken under modular *n*, for instance, $v_n = v_0$. For any two positive real numbers *x* and *y*, if x = qy + rfor some integer *q* and real *r*, $0 \leq r < y$, then we write $r = x \pmod{y}$. Assume *f* is a circular *p*-coloring for $C_n(d, 1)$. For any two points, *x* and *y*, on $S_p = [0, p)$, we denote [x, y] as the closed arc (interval) from *x* to *y*, in the clockwise direction. Similarly, [a, b) denotes a half-open arc (interval) on S_p .

Note, by Prop. 9, $\chi_c(C_n(d, 1)) \ge 2d + 1$, for any n and d.

Theorem 10 If $0 < d \le 1/2$, then

$$\chi_c(C_n(d,1)) = \begin{cases} 2, & \text{if } n \equiv 0 \pmod{4}; \\ 2+1/k, & \text{if } n = 4k+2 \text{ or } n = 2k+1 \text{ for some } k \ge 1 \end{cases}$$

Proof. Assume *n* is even, n = 2m for some $m \ge 2$. Then the subgraph induced by edges of weight 1 form two disjoint weighted *m*-cycles $C_m(1)$, *A* and *B*, where $V(A) = \{v_{2i} : i = 0, 1, 2, \dots, m-1\}$ and $V(B) = \{v_{2i+1} : i = 0, 1, \dots, m-1\}$, as subgraphs in $C_n(d, 1)$. By Prop. 7, $\chi_c(C_n(d, 1)) \ge \chi_c(C_m(1))$. It is known [10] that $\chi_c(C_m(1)) = 2$, if *m* is even; and $\chi_c(C_m(1)) = 2 + 1/m'$, if m = 2m' + 1. Therefore, the lower bounds for even cycles are obtained. To prove the upper bounds, we let $\chi_c(C_m(1)) = p$, and let f be a circular p-coloring for A. We then extend f to $C_n(d, 1)$ by letting $f(v_{2i+1}) = f(v_i) + 1/2 \pmod{p}$. It is easy to check that f is a circular p-coloring for $C_n(d, 1)$, as $d \leq 1/2$. So, the upper bounds hold.

Assume n = 2k + 1. Then all the edges of weight 1 in $C_n(d, 1)$ form an *n*-cycle $C_n(1)$ as a subgraph. By Prop. 7, we have $\chi_c(C_n(d, 1)) \ge \chi_c(C_n(1)) = 2 + 1/k$. Moreover, since $d \le 1/2$, it is easy to see that a circular *p*-coloring for $C_n(1)$, with p = 2 + 1/k, is also a circular *p*-coloring for $C_n(d, 1)$.

Theorem 11 Let C_n be a cycle and let d > 1/2 be real. If n = 2k + 1 and $d \ge k$, then $\chi_c(C_n(d, 1)) = d(2 + 1/k) = \frac{nd}{k}$.

Proof. Assume n = 2k + 1 and $k \leq d$. Let p = d(2 + 1/k). The function f defined on $V(C_n)$ by $f(v_i) = id \pmod{p}$ is a circular p-coloring for $C_n(d, 1)$. Hence, $\chi_c(C_n(d, 1)) \leq d(2 + 1/k)$. By Lemma 2, $\chi_c(C_n(d)) = d\chi_c(C_n(1)) = d(2 + 1/k)$. Hence $\chi_c(C_n(d, 1)) \geq \chi_c(C_n(d)) = d(2 + 1/k)$.

Lemma 12 The in-equality $\chi_c(C_n(d, 1)) \leq 2d+2$ holds for: 1) n is even and d > 1/2; 2) $n = 2k + 1 \geq 9$ and 1/2 < d < k; and 3) n = 7 and $1 \leq d \leq 2$.

Proof. It suffices to find a circular (2d + 2)-coloring for $C_n(d, 1)$, for each case. We express such a coloring f by a *difference sequence* (t_1, t_2, \dots, t_n) of positive reals t_i , where $f(v_0) = 0$ and $f(v_{i+1}) = f(v_i) + t_i \pmod{2d+2}$. The following claim follows from the definition.

Claim. Let $f: V(C_n) \to [0, 2d+2)$ be a function with $f(v_0) = 0$, and $f(v_{i+1}) = f(v_i) + t_i \pmod{2d+2}, \ 0 \le i \le n-1$. Then f is a circular (2d+2)-coloring for $C_n(d,1)$ if the following hold for all i:

- (a) $d \leq t_i \leq d+2$,
- (b) $t_i + t_{i+1} \in [2d, 2d+1] \cup [1, 2]$, and
- (c) $t_0 + t_1 + t_2 + \dots + t_{n-1} = 0 \pmod{2d+2}$.
- 1) Assume n is even. Let f be defined by the sequence $(t_0, t_1, \dots, t_{n-1})$:

$$(d+1, \underbrace{d+2, d+2, \cdots, d+2}_{(\frac{n}{2}-1) \text{ terms}}, d+1, \underbrace{d, d, d, \cdots, d}_{(\frac{n}{2}-1) \text{ terms}}).$$

By Claim, it is easy to check that f is a circular (2d+2)-coloring for $C_n(d, 1)$.

2) Let $n = 2k + 1 \ge 9$ and d < k. Write 2k - d = 2m + m' + r', for some integers m, m', where $m' \in \{0, 1\}$, and some real $r', 0 \le r' < 1$. Note, $m \ge 2$, as $k \ge 4$. Let $(t_0, t_1, t_2, \dots, t_n)$ be:

$$(d+1, \underbrace{d+2, d+2, \cdots, d+2}_{m-1 \text{ terms}}, d+1, d, d+m', d, d+r', \underbrace{d, d, \cdots, d}_{2k-m-4 \text{ terms}}).$$

Because $k \ge 4$, it is straightforward to check that (a) - (c) in the Claim are satisfied. We leave the details to the reader.

3) Assume n = 7 and $1 \le d \le 2$. Let r' = 2 - d. Then $0 \le r' \le 1$. Let $f: V(C_7) \to [0, 2d + 2)$ be defined by the difference sequence: (d, d + 1, d + 2, d + 1, d, d + r', d). It is easy to check that f is a circular (2d + 2)-coloring for $C_7(d, 1)$.

Lemma 13 Assume $\chi_c(C_n(d, 1)) = p = 2d + 1 + r$ for some real $0 \le r < 1$. Let f be a circular p-coloring for $C_n(d, 1)$ with $f(v_0) = 0$ and $f(v_1) \le p/2$. Assume $f(v_{i+1}) = f(v_i) + d + t_i \pmod{p}$ for $i = 0, 1, \dots, n-1$. Let $t = t_0 + t_1 + \dots + t_{n-1}$. Then the following hold:

(1)
$$0 \le t_i < (1+r)/2$$
 and $t_i + t_{i+1} \le r$, for $i = 0, 1, \dots, n-1$.

(2)
$$0 \le t \le \frac{nr}{2}$$
 and $nd + t = 0 \pmod{p}$.

Proof. Let f be a circular p-labeling for $C_n(d, 1)$, where p = 2d + 1 + r, $0 \leq r < 1$, $f(v_0) = 0$, and $f(v_1) \leq p/2$. Then $f(v_1) < p/2$. For if $f(v_1) = p/2$, then it is impossible to color v_2 , as $v_1 \sim v_2$, dist $(v_2, v_0) = 2$, and p/2 < d + 1. Hence, $d \leq l(f(v_0), f(v_1)) < p/2$ and $0 \leq t_0 < (1 + r)/2$. Also, this implies that $d \leq l(f(v_1), f(v_2)) < p/2$. For if $l(f(v_1), f(v_2)) \geq p/2$, then as dist $(v_2, v_0) = 2$ and dist $(v_2, v_1) = 1$, we must have $1 \leq f(v_2) \leq f(v_1) - d$, which is impossible as $f(v_1) < p/2 < d + 1$. Therefore, we conclude that $f(v_2) \leq p - 1 = 2d + r$. Indeed, this can be extended to that $f(v_{i+2}) \leq f(v_i) + 2d + r \pmod{p}$ for any i. Hence, $t_i + t_{i+1} \leq r$. This proves (1).

Because $v_0 = v_n$, by (1), we have $f(v_0) = f(v_n) = f(v_0) + nd + t \pmod{p}$, so $nd + t = 0 \pmod{p}$. If n is even, (2) follows by (1) immediately. If n is add, then fix a smallest t_j among all t_i 's (so $t_j \le r/2$), and then pair up the rest of t_i 's by $t_i + t_{i+1} \le r$.

Let f be a circular p-coloring for a symmetric weighted graph G(V, A). An edge (u, v) is said to be *tight* if $|f(u) - f(v)|_p = a_{uv}$. A cycle $C = (u_1, u_2, \dots, u_m)$ is *tight* if all its edges $(u_1, u_2), (u_2, u_3), \dots, (u_m, u_1)$ are tight. If C is a tight cycle, then the weight of C, $a(C) = a_{u_1u_2} + a_{u_2u_3} + \dots + a_{u_mu_1}$ is an integral multiple of p, the number $w(C) = \frac{a(C)}{p}$ is called the winding number of C. Mohar [9] proved that if $p = \chi_c(G)$, then there is a circular p-coloring of G which has a tight cycle.

Assume n = 2k + 1. For any 1/2 < d < k, let $z(d) = \lfloor \frac{nd}{2d+1} \rfloor = k - h$ for some integer h. As d < k, it follows that $h \ge 1$. Because nd = (2k + 1)d = (2d + 1)(k - h) + 2dh + d - k + h, so $0 \le 2dh + d - k + h < 2d + 1$, implying

$$\frac{k-h}{2h+1} \le d < \frac{k-h+1}{2h-1}.$$
(3.1)

Lemma 14 Let n = 2k + 1. For any d,

$$\chi_c(C_n(d,1)) \le \min \{\frac{nd}{z(d)}, \frac{n}{2h-1}\}.$$

Proof. Let $p = \frac{nd}{z(d)}$. Then $f(v_i) = id \mod p$ is a circular p-coloring for $C_n(d, 1)$. Let $p' = \frac{n}{2h-1}$. By (3.1), $d < \frac{k-h+1}{2h-1}$, so $f'(v_i) = (\frac{p'-1}{2})i \mod p'$ is a circular p'-coloring for $C_n(d, 1)$. Note, $(v_0, v_1, v_2, \dots, v_{n-1})$ is a tight cycle in f, and $(v_0, v_2, v_4, \dots, v_{n-1}, v_1, v_2, \dots, v_{n-1})$ is a tight cycle in f', with winding numbers, respectively, z(d) and 2h - 1.

Theorem 15 Let n = 2k + 1. If $\chi_c(C_n(d, 1)) < 2d + 2$, then

$$\chi_c(C_n(d,1)) = \min \{\frac{nd}{z(d)}, \frac{n}{2h-1}\}.$$

Proof. Assume $\chi_c(C_n(d, 1)) = p = 2d+1+r$, with $0 \le r < 1$. By Lemma 14, it suffices to show that $p \ge \min\{\frac{nd}{z(d)}, \frac{n}{2h-1}\}$. Let f be a circular p-coloring for $C_n(d, 1)$, with $f(v_0) = 0$. Without loss of generality (by symmetry), assume $f(v_1) \le p/2$. By Lemma 13, $f(v_{i+1}) = f(v_i) + d + t_i$ and nd + t = 0 (mod p), where $t = t_0 + t_1 + \cdots + t_{n-2}$. Hence,

$$nd + t = (2k + 1)d + t = (2d + 1 + r)x$$
, for some integer x. (3.2)

If $x \leq z(d)$, then $\chi_c(C_n(d,1)) = 2d + 1 + r = \frac{nd+t}{x} \geq \frac{nd}{z(d)}$, and we are done. Assume $x \geq z(d) + 1$. Because $t \leq \frac{nr}{2}$, by (3.2), we have $t = (2d + 1 + r)x - (2k+1)d \leq \frac{nr}{2}$. This implies that $r \geq \frac{(2d+1)x - (2k+1)d}{k - 1/2 - x}$. By some easy calculation, we get $\chi_c(C_n(d,1)) = 2d + 1 + r \geq \frac{n}{2h-1}$.

For $n = 2k + 1 \ge 9$, by Theorems 10, 11, 15, and Lemma 12, we express the value of $\chi_c(C_{2k+1}(d, 1))$ as a continuous, piecewise linear function of d:

Corollary 16 Let $n = 2k + 1 \ge 9$. For any d > 1/2, let $z(d) = \lfloor \frac{nd}{2d+1} \rfloor$. Then

$$\chi_c(C_n(d,1)) = \begin{cases} n, & \text{if } d \in [k - (1/2), k);\\ 2d + 2, & \text{if } d \in [\frac{2k-2}{3}, k - (1/2));\\ \frac{n}{2h-1}, & \text{if } d \in [\frac{k-h}{2h-1}, \frac{k-h+1}{2h-1}), h = 2, 3, \cdots, \lfloor \frac{k+1}{2} \rfloor,\\ \frac{n}{k}, & \text{if } d \in (0, 1/2];\\ \frac{nd}{z(d)}, & \text{otherwise.} \end{cases}$$

Proof. Let n = 2k + 1. If $d \ge k$, then z(d) = k. So, the result for $d \ge k$ and $d \le 1/2$ follows by Theorems 11 and 10, respectively. In the following, assume 1/2 < d < k.

Let $z(d) = \lfloor \frac{nd}{2d+1} \rfloor = k-h$. Assume $\chi_c(C_n(d,1)) = p = 2d+1+r$ for some $0 \le r < 1$. By Theorem 15, (a) $2d+1+r = \frac{n}{2h-1}$ or (b) $2d+1+r = \frac{nd}{z(d)}$ holds. As r < 1, if (a) holds, then $d > \frac{n}{2(2h-1)} - 1$; if (b) holds, then $d < \frac{2(k-h)}{2h+1}$. Assume h = 1. By (3.1), one gets:

$$\chi_c(C_n(d,1)) = \begin{cases} n, & \text{if } d \in (k-(1/2),k);\\ \frac{nd}{z(d)}, & \text{if } d \in \left[\frac{k-1}{3}, \frac{2(k-1)}{3}\right). \end{cases}$$

By Lemma 12, $\chi_c(C_n(d, 1)) = 2d + 2$, if $d \in [\frac{2(k-1)}{3}, k - (1/2)]$. If $h \ge 2$, functions (a) and (b) intersect at $d = \frac{k-h}{2h-1}$. Moreover, (a) is greater than (b), if $\frac{k-h}{2h-1} < d < \frac{k-h+1}{2h-1}$. Note that, as $h \ge 2$, we have $\frac{2(k-h)}{2h+1} \ge \frac{k-h+1}{2h-1}$ and $\frac{n}{2(2h-1)} - 1 \le \frac{k-h}{2h-1}$. By (3.1), the result follows.

Theorem 17

$$\chi_c(C_5(d,1)) = \begin{cases} (5/2)d, & \text{if } d \ge 2; \\ 5, & \text{if } d \in [1,2); \\ 5d, & \text{if } d \in (1/2,1); \\ 5/2, & \text{if } 0 < d \le 1/2. \end{cases}$$

Proof. Note, $\chi_c(C_5(d, 1)) \ge \min\{5d, 5\}$, as $C_5(d, 1)$ is a complete graph, so any circular coloring is one-to-one, and the separation between any two consecutive labels must be at least $\min\{d, 1\}$. Hence, the result follows by Theorems 10 and 11, and the circular 5–coloring (0, 1, 2, 3, 4) and the circular 5d–coloring (0, d, 2d, 3d, 4d) for $(v_0, v_1, v_2, v_3, v_4)$, when $d \in [1, 2)$ and $d \in$ (1/2, 1), respectively.

Lemma 18 If $2 \le d \le 3$ and $\chi_c(C_7(d, 1)) < \min\{7, 3d\}$, then

 $\chi_c(C_7(d,1)) \ge (5/2)d + 1.$

Proof. Assume $2 \le d \le 3$ and $\chi_c(C_7(d, 1)) = p < \min\{7, 3d\}$. Let f be a circular p-coloring for $C_7(d, 1)$ with $f(v_0) = 0$. For any i, because p < 3d, so $1 \le |f(v_i) - f(v_{i+2})|_p < d$, implying one of the following holds:

$$|f(v_{i+2}) - f(v_{i-2})|_p \ge 2$$
, or (3.3)

$$|f(v_{i+2}) - f(v_{i-2})|_p < d - 1.$$
(3.4)

Assume for all *i*, (3.4) holds. So, $|f(v_2) - f(v_5)|_p < d - 1$. Without loss of generality, we assume $f(v_2), f(v_5) \in [1, d)$. By (3.4), $|f(v_6) - f(v_2)|_p < d - 1$ and $|f(v_5) - f(v_1)|_p < d - 1$, which is impossible as $v_6 \sim v_0$ and $v_1 \sim v_0$.

Hence, there exists some *i* such that (3.3) holds. By symmetry, we may assume that $i = 0, 1 \leq f(v_2) < d$ and $p - d < f(v_5) \leq p - 1$. Then

 $f(v_1), f(v_6) \in (f(v_2), f(v_5))$. If $f(v_1) < f(v_6)$, then the ordering of the labels of $(v_0, v_2, v_1, v_6, v_5)$ on S_p gives $p \ge 2d + 3 \ge 7$, a contradiction. (Using only the sub-index *i* of each v_i , we abbreviate the above contradiction by $(0, 2, 1, 6, 5) \Rightarrow 2d + 3$.) Hence, $f(v_6) < f(v_1)$. So, the labels $0=f(v_0) < f(v_2) < f(v_6) < f(v_1) < f(v_5)$ divide S_p into five intervals, $I_1 = (f(v_0), f(v_2)), I_2 = (f(v_2), f(v_6)), \cdots$, and $I_5 = (f(v_5), f(v_0))$. By definition, $f(v_4) \notin I_5$ and $f(v_3) \notin I_1$.

Assume $f(v_4) \in I_2$. Because $|f(v_4) - f(v_2)|_p < d$, $|f(v_6) - f(v_4)|_p < d$, and $|f(v_3) - f(v_4)|_p \ge d$, so $f(v_3) \notin I_2$. If $f(v_3) \in I_3$, then $(0, 2, 4, 3, 1) \Rightarrow$ 2d + 3. If $f(v_3) \in I_4$, then $(0, 2, 4, 6, 1, 3, 5) \Rightarrow 7$. If $f(v_3) \in I_5$, then $(0, 2, 4, 6, 1, 5, 3) \Rightarrow 7$. Therefore $f(v_4) \notin I_2$. Symmetrically and similarly, one can show that $f(v_3), f(v_4) \notin I_4$ and $f(v_3) \notin I_2$. Note, it is impossible that $f(v_3), f(v_4) \in I_3$, as $l(I_3) < d$.

By symmetry, it suffices to consider two cases: (1) $f(v_3) \in I_5$ and $f(v_4) \in I_1$; and (2) $f(v_3) \in I_3$ and $f(v_4) \in I_1$. Indeed, they are "identical." In (1) and (2), the orderings of the labels on S_p are, respectively (starting at v_0 and v_6 , respectively, and using only the sub-index *i* for each v_i), (0, 4, 2, 6, 1, 5, 3) and (6, 3, 1, 5, 0, 4, 2). By increasing each number in the latter case by 1, they become identical.

It suffices to consider (2). Let $l(f(v_0), f(v_4)) = x_1$ and $l(f(v_1), f(v_5)) = x_2$. Assume $x_2 \ge x_1$ (the proof for $x_2 \le x_1$ is similar). Set $l(f(v_4), f(v_2)) = 1 + t_1$, $l(f(v_2), f(v_3)) = d + t_2$, $l(f(v_3), f(v_1)) = 1 + t_3$, $l(f(v_5), f(v_4)) = d + t_4$, for some $t_1, t_2, t_3, t_4 \ge 0$. Then, $p = 2d + 2 + x_2 + t_1 + t_2 + t_3 + t_4$.

Because $v_0 \sim v_6$, we have $x_1 + 1 + t_1 + l(f(v_2), f(v_6)) \geq d$, implying $l(f(v_2), f(v_6)) \geq d - x_1 - 1 - t_1$. Similarly, because $v_6 \sim v_5$, we have $l(f(v_6), f(v_3)) \geq d - x_2 - 1 - t_3$. Therefore, $l(f(v_2), f(v_3)) = d + t_2 \geq 2d - 2 - x_1 - x_2 - t_1 - t_3$. Because $x_2 \geq x_1$, we conclude that $x_2 \geq (d-2)/2$, so $p \geq (5/2)d + 1$.

Theorem 19

$$\chi_c(C_7(d,1)) = \begin{cases} (7/3)d, & \text{if } d \ge 3; \\ 7, & \text{if } 12/5 \le d \le 3; \\ (5/2)d + 1, & \text{if } 2 \le d \le 12/5; \\ 2d + 2, & \text{if } 4/3 \le d \le 2; \\ (7/2)d, & \text{if } 2/3 \le d \le 4/3; \\ 7/3, & \text{if } 0 < d \le 2/3. \end{cases}$$

Proof. The result follows by Lemmas 12, 18, Theorems 10, 11, 15, and the circular $(\frac{5}{2}d + 1)$ -coloring $(0, d, 2d, \frac{d}{2} - 1, \frac{3d}{2}, \frac{d}{2}, \frac{3d}{2} + 1)$ for $C_7(d, 1)$, when $2 \le d \le 12/5$.

Similar to Theorem 15 and Corollary 16, we obtain the following result for even cycles. We leave the details to the reader.

Theorem 20 Let n = 2k, and for any real d > 1/2, let $z(d) = \lfloor \frac{nd}{2d+1} \rfloor = k - h$. Then $\chi_c(C_n(d, 1)) = \min \{\frac{nd}{z(d)}, \frac{k}{h-1}, 2d+2\}$. Or equivalently,

$$\chi_c(C_n(d,1)) = \begin{cases} 2d+2, & \text{if } d \ge k-1; \\ \frac{k}{m}, & \text{if } d \in [\frac{k-m-1}{2m}, \frac{k-m}{2m}), \ m = 1, 2, \cdots, \lfloor \frac{k-1}{2} \rfloor; \\ 2, & \text{if } k \text{ is even and } d \in (0, 1/2]; \\ \frac{2k}{k-1}, & \text{if } k \text{ is odd and } d \in (0, 1/2]; \\ \frac{nd}{z(d)}, & \text{otherwise.} \end{cases}$$

According to Lemma 2, we have determined the value of $\chi_c(C_n(d_1, d_2))$ for any positive reals d_1 and d_2 . A special case of interest is that when $d_1 = d \times d_2$ for some integer d, then it bounds to find the value of $\chi_c(C_n(d, 1))$. By Theorems 16, 17, 19, 20, and Corollary 16, we have:

Corollary 21 Let d and n be positive integers, $n \ge 3$. Then

$$\chi_c(C_n(d,1)) = \min\{2d+2, \frac{nd}{\lfloor \frac{nd}{2d+1} \rfloor}\}.$$

Corollary 21 implies that the value of $\chi_c(C_n(d, 1))$, when d is an integer, can be as close as possible to the lower bound $\lceil \chi_c(C_n(d, 1)) \rceil - 1$ (cf. (1.1)). Note that, if $\chi_c(C_n(d, 1)) = p < 2d + 2$, then there exists a circular p-coloring for $C_n(d, 1)$ with a tight cycle that has all edges of the same weight. (If n is odd, by the proof of Lemma 14, $(v_0, v_1, v_2, \dots, v_{n-1})$ or $(v_0, v_2, v_4, \dots, v_{n-1}, v_1, v_3, \dots, v_{n-1})$ is a tight cycle; if n is even, then $(v_0, v_1, v_2, \dots, v_{n-1})$ or $(v_0, v_2, v_4, \dots, v_{n-2})$ is a tight cycle.) This is not the case, however, when $\chi_c(C_n(d, 1)) \ge 2d + 2$. For instance, consider $C_7(d, 1)$ with $2 \le d \le 12/5$, it is impossible to get a circular p-coloring, p = (5/2)d + 1, with a tight cycle that has all edges of the same weight. Indeed, one can get a circular p-coloring with the tight cycle $(v_0, v_1, v_2, v_3, v_5, v_4, v_6)$ of winding number 2.

References

- [1] G. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Disc. Math., 9 (1996), 309 316.
- J. Georges, D. Mauro, and M. Whittlesey, *Relating path covering to ver*tex labellings with a condition at distance two, Disc. Math., 135 (1994), 103 - 111.
- J. R. Griggs and R. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Disc. Math. 5(1992), 586 - 595.
- [4] J. van den Heuvel, R. A. Leese and M. A. Shepherd, Graph labelling and radio channel assignment, J. Graph Theory, 29 (1998), 263 – 283.
- [5] D. Liu, Hamiltonicity and circular distance two labelings, Disc. Math., 232 (2001), 163 – 169.
- [6] D. Liu, Sizes of graphs with fixed orders and spans for circular distance two labeling, Ars Combinatoria, 67 (2003), 125 – 139.
- [7] D. Liu and X. Zhu, Circular distance two labeling and circular chromatic number, Ars Combinatoria, 69 (2003), 177 – 183.

- [8] D. Liu and X. Zhu, Circular distance two labeling and the λ -number for outerplanar graphs, SIAM J. Disc. Math., to appear.
- B. Mohar, Circular colorings of edge weighted graphs, J. Graph Theory, 43 (2003), 107 – 116.
- [10] X. Zhu, Circular chromatic number: A survey, Disc. Math., 229 (2001), 371 - 410.