
Circular Coloring for Graphs with

Distance Constraints ∗

Daphne Der-Fen Liu
Department of Mathematics

California State University, Los Angeles
Los Angeles, CA 90032, USA

Email: dliu@calstatela.edu

June 4, 2004

Abstract

Let G = (V,E) be a simple un-weighted graph, and let
→

d= (d1,
d2, · · ·, dm) be a sequence of positive reals. For a positive real r, let
Sr denote the circle on R2 centered at the origin with circumference r.

A circular r−coloring for G with distance constraint
→

d is a mapping
f : V (G) → Sr such that |f(u) − f(v)|r ≥ di, whenever the distance
between u and v in G is i (where |x− y|r is the length of a shorter arc
between x and y on Sr). The circular chromatic number of G with

distance constraint
→

d , denoted by χc(G(
→

d )), is the infimum of r such
that there exists a circular r−coloring for G with distance constraints
→

d . For any cycle Cn, n ≥ 3, we determine the value of χ(Cn(d, 1)),
expressed as a continuous, piecewise linear function of d, d > 0. In
addition, we discuss relations between circular coloring (for weighted
graphs) and integral distance labeling.
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1 Introduction

Introduced by Mohar [9], circular coloring for edge weighted graphs is a

generalization of conventional circular coloring for simple graphs. An edge

weighted graph with vertex set V is a pair G = (V, A), where A : V × V →

R+ ∪ {0} is a weight assignment. For each (u, v) ∈ V × V , we write auv =

A(u, v). For a positive real r, denote Sr ⊂ R2 the circle with circumference

r centered at the origin of R2. For any x, y ∈ Sr, let l(x, y) denote the

arc length from x to y, in the clockwise direction. A circular r−coloring of

G = (V, A) is a function, c : V → Sr, such that l(c(u), c(v)) ≥ auv for every

(u, v) ∈ V × V . The circular chromatic number χc(G) of an edge-weighted

graph G = (V, A) is the infimum of all real numbers r for which there exists

a circular r−coloring of G.

The weights are weakly symmetric if the following is satisfied: For any

u, v ∈ V , if auv = 0, then avu = 0. The weights are called symmetric

if auv = avu, for every u, v ∈ V . Mohar [9] proved that the infimum in

the above definition of χc(G) for edge weighted graphs can be replaced by

minimum, if the weights are weakly symmetric.

We investigate circular coloring for weighted graphs with distance con-

straints. For any u, v ∈ V , let distG(u, v) denote the distance (length of a

shortest path) between u and v in G; when G is clear in the context, we

simply denote distG(u, v) by dist(u, v). Let ~d = (d1, d2, · · · , dm) be a se-

quence of positive reals. The graph G with distance constraint ~d, denoted

by G(d1, d2, · · · , dm) = G(~d) = (V, A), is a symmetric edge weighted graph,

defined as follows. For each u, v ∈ V (G), let auv = avu = di, if distG(u, v) = i

where i = 1, 2, · · · , m; otherwise auv = 0. Following this notion, the con-

ventional circular chromatic number χc(G) of a simple un-weighted graph

G = (V, E) is the case when ~d = (1), that is, χc(G) = χc(G(1)); and the

conventional circular chromatic number of G2, the square of G (by adding

edges between vertices of distance two apart), has χc(G
2) = χc(G(1, 1)).

Section 3 of this article is devoted to complete solutions of χc(Cn(d, 1)),
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for any cycle Cn and any d > 0. For any n ≥ 3, we give the formula of

χc(Cn(d, 1)), expressed as a continuous, piecewise linear function of d.

Let ~d = (d1, d2, · · · , dm) be positive reals. For a simple un-weighted graph

G = (V, E), circular coloring for G(~d) is closely related to integral circular

distance labeling. For a positive integer k and a graph G = (V, E), a circular

(k; ~d)−labeling of G is a function, f : V (G) → {0, 1, 2, · · · , k − 1}, such that

the following is satisfied:

|f(x) − f(y)|k ≥ di, if distG(x, y) = i and i = 1, 2, · · · , m,

where |x − y|k = min{|x − y|, k − |x − y|}. The σ(d1, d2, · · · , dm)-number

(or σ~d-number) of an un-weighted simple graph G, denoted by σ~d(G), is

the smallest integer k such that G admits a circular (k; ~d)−labeling. The

special case when ~d = (d1, d2) is also known as the circular distance two

labeling; the values of σd1,d2
(G) for some families of graphs have been studied

in [4, 5, 6, 7, 8].

In the next section, we establish the following relation for any simple

graph G and any ~d = (d1, d2, · · · , dm) of positive integers di:

σ~d(G) − 1 < χc(G(~d)) ≤ σ~d(G). (1.1)

The upper bound in (1.1) is sharp for some graphs. The result on the values

of χc(Cn(d, 1)) for cycles obtained in this article implies that the lower bound

in (1.1) is sharp, in the sense that there exist graphs G such that the values

of χc(G(~d)) approach to the lower bound, as closely as possible.

2 Basic Properties

For any reals a, b with a ≤ b, we denote the half-open interval [a, b) by the

set of all reals x, a ≤ x < b. For any real r, we regard Sr as [0, r), by fixing

any point on Sr as 0, and going in the clockwise direction. Thus, a circular

r−coloring for a weighted graph can be viewed as a mapping from the vertex

set to [0, r).
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Theorem 1 Let G = (V, A) be a finite symmetric weighted graph with ra-

tional weights. If there is a circular r−coloring for G = (V, A) for some

rational r, then there exists a circular r−coloring f for G such that f(u) is

rational for every u ∈ V (G).

Proof. Let g be a circular r−coloring for G = (V, A), where r is rational. Let

q be a common denumerator of r and all the weights (expressed as fractions).

Let f(u) = bqg(u)c/q, for every u ∈ V (G). It is straightforward to verify

that f is a circular r−coloring for G = (V, A).

For any real t and any ~d = (d1, d2, · · · , dm), let t~d = (td1, td2, · · ·, tdm).

The following is obvious.

Lemma 2 Let G be a simple un-weighted graph, and let ~d = (d1, d2, · · · , dm)

be positive reals. Then t χc(G(~d)) = χc(G(t~d)) holds for any real t.

By Lemma 2, finding the value of χc(G(d1, d2)) for any positive reals d1

and d2, bounds to determining χc(G(d, 1)) for any positive real d.

Theorem 3 Let G be a simple un-weighted graph, and let ~d = (d1, d2, · · · , dm)

be positive integers. For any positive integer q,

χc(G(~d)) = min{p/q : there exists a circular (p; q ~d)−labeling for G}.

Proof. Since G(~d) is symmetric with integral weights, so χc(G(~d)) is rational

(cf. [9]). Let χc(G(~d)) = p/q. By the proof of Theorem 1, there exists a

circular (p/q)−coloring for G(~d) such that for every vertex u, f(u) = x/q for

some x ∈ {0, 1, 2, · · · , p − 1}. Define f ∗(u) = qf(u), u ∈ V (G). Then f ∗ is a

circular (p; q~d)−labeling for G.

On the other hand, for any circular (p; q ~d)−labeling f of G, the function

g, defined by g(u) = f(u)/q, u ∈ V (G), is a circular (p/q)−coloring for G(~d).

We now prove (1.1).
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Theorem 4 For any simple graph G, and any ~d = (d1, d2, · · · , dm) of positive

integers, σ~d(G) = dχc(G(~d))e.

Proof. If f is a circular (k; ~d)−labeling for G for some integer k, then f is

also a circular k−coloring for G(~d). Hence σ~d(G) ≥ dχc(G(~d))e, as σc(G) is

an integer.

Let f be a circular r−coloring for G(~d). Then f generates a circular

(dre; ~d)−labeling f ′ for G, defined as f ′(v) = bf(v)c for every v ∈ V (G).

If distG(u, v) = i = 1, 2, · · · , m, then |f(u) − f(v)|p ≥ di, implying |f ′(u) −

f ′(v)|p ≥ di.

The diameter of an un-weighted connected graph G, denoted by diam(G),

is the maximum distance over all pairs of vertices in G. For any graph

G = (V, E), let Gc denote the complement of G. The path covering number

(or linear arboricity) of a graph G, denoted by pv(G), is the smallest number

of paths partitioning V (G). The following was proved in [5].

Theorem 5 [5] Let G be an n-vertex graph. Then

σ2,1(G)

{

≤ n, if Gc is Hamiltonian;
= n + pv(G

c), if Gc is not Hamiltonian.

A special case of Theorem 5 is when the diameter of G is two, for which

by Theorem 5, and by a discussion in [9] ((c) in Section 1), we have:

Corollary 6 Let G be an n-vertex graph with diameter two. Then

σ2,1(G) = χc(G(2, 1)) =

{

n, if Gc is Hamiltonian;
n + pv(G

c), if Gc is not Hamiltonian.

A special case to Corollary 6 is when G contains a universal vertex, in

which σ2,1(G) = χc(G(2, 1)) = n + pv(G
c).

Let G = (V, A) be a weighted graph. A subgraph H = (V ′, A′) of G is

a weighted graph, with V ′ ⊂ V , and A′(u, v) ≤ A(u, v) for any u, v ∈ V ′.

If H(V ′, A′) is a subgraph of G = (V, A), then a circular p−coloring of

G = (V, A), when restricted to V ′, is a circular p−coloring for H = (V ′, A′).

Hence, we have
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Proposition 7 Let G = (V, A) be a weighted graph, and H = (V ′, A′) a

subgraph of G. Then χc(H) ≤ χc(G).

The following is obtained directly by a greedy (first-fit) algorithm.

Proposition 8 Let T be a tree with maximum degree ∆. Then χc(T (d, 1)) =

2d + ∆ − 1, for any positive real d.

Proposition 9 Let G be a graph with maximum degree ∆. Then χc(G(d, 1)) ≥

2d + ∆ − 1, for any positive real d.

3 Cycles

For any cycle Cn, we denote the vertex set by V (Cn) = {v0, v1, v2, · · · , vn−1},

where vi ∼ vi+1 for any i, and the sub-index is taken under modular n, for

instance, vn = v0. For any two positive real numbers x and y, if x = qy + r

for some integer q and real r, 0 ≤ r < y, then we write r = x (mod y).

Assume f is a circular p−coloring for Cn(d, 1). For any two points, x and y,

on Sp = [0, p), we denote [x, y] as the closed arc (interval) from x to y, in the

clockwise direction. Similarly, [a, b) denotes a half-open arc (interval) on Sp.

Note, by Prop. 9, χc(Cn(d, 1)) ≥ 2d + 1, for any n and d.

Theorem 10 If 0 < d ≤ 1/2, then

χc(Cn(d, 1)) =

{

2, if n ≡ 0 (mod 4);
2 + 1/k, if n = 4k + 2 or n = 2k + 1 for some k ≥ 1.

Proof. Assume n is even, n = 2m for some m ≥ 2. Then the subgraph

induced by edges of weight 1 form two disjoint weighted m-cycles Cm(1), A

and B, where V (A) = {v2i : i = 0, 1, 2, · · · , m − 1} and V (B) = {v2i+1 :

i = 0, 1, · · · , m − 1}, as subgraphs in Cn(d, 1). By Prop. 7, χc(Cn(d, 1)) ≥

χc(Cm(1)). It is known [10] that χc(Cm(1)) = 2, if m is even; and χc(Cm(1)) =

2 + 1/m′, if m = 2m′ + 1. Therefore, the lower bounds for even cycles are
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obtained. To prove the upper bounds, we let χc(Cm(1)) = p, and let f

be a circular p−coloring for A. We then extend f to Cn(d, 1) by letting

f(v2i+1) = f(vi) + 1/2 (mod p). It is easy to check that f is a circular

p−coloring for Cn(d, 1), as d ≤ 1/2. So, the upper bounds hold.

Assume n = 2k +1. Then all the edges of weight 1 in Cn(d, 1) form an n-

cycle Cn(1) as a subgraph. By Prop. 7, we have χc(Cn(d, 1)) ≥ χc(Cn(1)) =

2 + 1/k. Moreover, since d ≤ 1/2, it is easy to see that a circular p−coloring

for Cn(1), with p = 2 + 1/k, is also a circular p−coloring for Cn(d, 1).

Theorem 11 Let Cn be a cycle and let d > 1/2 be real. If n = 2k + 1 and

d ≥ k, then χc(Cn(d, 1)) = d(2 + 1/k) = nd
k

.

Proof. Assume n = 2k + 1 and k ≤ d. Let p = d(2 + 1/k). The function

f defined on V (Cn) by f(vi) = id (mod p) is a circular p−coloring for

Cn(d, 1). Hence, χc(Cn(d, 1)) ≤ d(2 + 1/k). By Lemma 2, χc(Cn(d)) =

dχc(Cn(1)) = d(2 + 1/k). Hence χc(Cn(d, 1)) ≥ χc(Cn(d)) = d(2 + 1/k).

Lemma 12 The in-equality χc(Cn(d, 1)) ≤ 2d+2 holds for: 1) n is even and

d > 1/2; 2) n = 2k + 1 ≥ 9 and 1/2 < d < k; and 3) n = 7 and 1 ≤ d ≤ 2.

Proof. It suffices to find a circular (2d + 2)−coloring for Cn(d, 1), for each

case. We express such a coloring f by a difference sequence (t1, t2, · · · , tn) of

positive reals ti, where f(v0) = 0 and f(vi+1) = f(vi) + ti (mod 2d + 2).

The following claim follows from the definition.

Claim. Let f : V (Cn) → [0, 2d + 2) be a function with f(v0) = 0, and

f(vi+1) = f(vi) + ti (mod 2d + 2), 0 ≤ i ≤ n − 1. Then f is a circular

(2d + 2)−coloring for Cn(d, 1) if the following hold for all i:

(a) d ≤ ti ≤ d + 2,

(b) ti + ti+1 ∈ [2d, 2d + 1] ∪ [1, 2], and

(c) t0 + t1 + t2 + · · · + tn−1 = 0 (mod 2d + 2).

1) Assume n is even. Let f be defined by the sequence (t0, t1, · · ·, tn−1):

(d + 1, d + 2, d + 2, · · · , d + 2
︸ ︷︷ ︸

(n
2
− 1) terms

, d + 1, d, d, d, · · · , d
︸ ︷︷ ︸

(n
2
− 1) terms

).
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By Claim, it is easy to check that f is a circular (2d+2)−coloring for Cn(d, 1).

2) Let n = 2k + 1 ≥ 9 and d < k. Write 2k − d = 2m + m′ + r′, for

some integers m, m′, where m′ ∈ {0, 1}, and some real r′, 0 ≤ r′ < 1. Note,

m ≥ 2, as k ≥ 4. Let (t0, t1, t2, · · · , tn) be:

(d + 1, d + 2, d + 2, · · · , d + 2
︸ ︷︷ ︸

m − 1 terms

, d + 1, d, d + m′, d, d + r′, d, d, · · · · · · · · · , d
︸ ︷︷ ︸

2k − m − 4 terms

).

Because k ≥ 4, it is straightforward to check that (a) − (c) in the Claim are

satisfied. We leave the details to the reader.

3) Assume n = 7 and 1 ≤ d ≤ 2. Let r′ = 2 − d. Then 0 ≤ r′ ≤ 1. Let

f : V (C7) → [0, 2d + 2) be defined by the difference sequence: (d, d + 1, d +

2, d + 1, d, d + r′, d). It is easy to check that f is a circular (2d + 2)−coloring

for C7(d, 1).

Lemma 13 Assume χc(Cn(d, 1)) = p = 2d + 1 + r for some real 0 ≤ r < 1.

Let f be a circular p−coloring for Cn(d, 1) with f(v0) = 0 and f(v1) ≤ p/2.

Assume f(vi+1) = f(vi) + d + ti (mod p) for i = 0, 1, · · · , n − 1. Let t =

t0 + t1 + · · · + tn−1. Then the following hold:

(1) 0 ≤ ti < (1 + r)/2 and ti + ti+1 ≤ r, for i = 0, 1, · · · , n − 1.

(2) 0 ≤ t ≤ nr
2

and nd + t = 0 (mod p).

Proof. Let f be a circular p−labeling for Cn(d, 1), where p = 2d + 1 + r,

0 ≤ r < 1, f(v0) = 0, and f(v1) ≤ p/2. Then f(v1) < p/2. For if f(v1) =

p/2, then it is impossible to color v2, as v1 ∼ v2, dist(v2, v0) = 2, and

p/2 < d + 1. Hence, d ≤ l(f(v0), f(v1)) < p/2 and 0 ≤ t0 < (1 + r)/2. Also,

this implies that d ≤ l(f(v1), f(v2)) < p/2. For if l(f(v1), f(v2)) ≥ p/2, then

as dist(v2, v0) = 2 and dist(v2, v1) = 1, we must have 1 ≤ f(v2) ≤ f(v1) − d,

which is impossible as f(v1) < p/2 < d + 1. Therefore, we conclude that

f(v2) ≤ p − 1 = 2d + r. Indeed, this can be extended to that f(vi+2) ≤

f(vi) + 2d + r (mod p) for any i. Hence, ti + ti+1 ≤ r. This proves (1).
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Because v0 = vn, by (1), we have f(v0) = f(vn) = f(v0)+nd+t (mod p),

so nd + t = 0 (mod p). If n is even, (2) follows by (1) immediately. If n is

add, then fix a smallest tj among all ti’s (so tj ≤ r/2), and then pair up the

rest of ti’s by ti + ti+1 ≤ r.

Let f be a circular p−coloring for a symmetric weighted graph G(V, A).

An edge (u, v) is said to be tight if |f(u) − f(v)|p = auv. A cycle C =

(u1, u2, · · · , um) is tight if all its edges (u1, u2), (u2, u3), · · ·, (um, u1) are tight.

If C is a tight cycle, then the weight of C, a(C) = au1u2
+ au2u3

+ · · ·+ aumu1

is an integral multiple of p, the number w(C) = a(C)
p

is called the winding

number of C. Mohar [9] proved that if p = χc(G), then there is a circular

p−coloring of G which has a tight cycle.

Assume n = 2k + 1. For any 1/2 < d < k, let z(d) = b nd
2d+1

c = k − h for

some integer h. As d < k, it follows that h ≥ 1. Because nd = (2k + 1)d =

(2d + 1)(k− h) + 2dh + d− k + h, so 0 ≤ 2dh + d− k + h < 2d + 1, implying

k − h

2h + 1
≤ d <

k − h + 1

2h − 1
. (3.1)

Lemma 14 Let n = 2k + 1. For any d,

χc(Cn(d, 1)) ≤ min {
nd

z(d)
,

n

2h − 1
}.

Proof. Let p = nd
z(d)

. Then f(vi) = id mod p is a circular p−coloring for

Cn(d, 1). Let p′ = n
2h−1

. By (3.1), d < k−h+1
2h−1

, so f ′(vi) = (p′−1
2

)i mod p′ is a

circular p′−coloring for Cn(d, 1). Note, (v0, v1, v2, · · · , vn−1) is a tight cycle in

f , and (v0, v2, v4, · · · , vn−1, v1, v2, · · · , vn−1) is a tight cycle in f ′, with winding

numbers, respectively, z(d) and 2h − 1.

Theorem 15 Let n = 2k + 1. If χc(Cn(d, 1)) < 2d + 2, then

χc(Cn(d, 1)) = min {
nd

z(d)
,

n

2h − 1
}.
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Proof. Assume χc(Cn(d, 1)) = p = 2d+1+r, with 0 ≤ r < 1. By Lemma 14,

it suffices to show that p ≥ min{ nd
z(d)

, n
2h−1

}. Let f be a circular p−coloring

for Cn(d, 1), with f(v0) = 0. Without loss of generality (by symmetry),

assume f(v1) ≤ p/2. By Lemma 13, f(vi+1) = f(vi) + d + ti and nd + t = 0

(mod p), where t = t0 + t1 + · · · tn−2. Hence,

nd + t = (2k + 1)d + t = (2d + 1 + r)x, for some integer x. (3.2)

If x ≤ z(d), then χc(Cn(d, 1)) = 2d + 1 + r = nd+t
x

≥ nd
z(d)

, and we are done.

Assume x ≥ z(d) + 1. Because t ≤ nr
2

, by (3.2), we have t = (2d + 1 +

r)x − (2k + 1)d ≤ nr
2

. This implies that r ≥ (2d+1)x−(2k+1)d
k−1/2−x

. By some easy

calculation, we get χc(Cn(d, 1)) = 2d + 1 + r ≥ n
2h−1

.

For n = 2k + 1 ≥ 9, by Theorems 10, 11, 15, and Lemma 12, we express

the value of χc(C2k+1(d, 1)) as a continuous, piecewise linear function of d:

Corollary 16 Let n = 2k + 1 ≥ 9. For any d > 1/2, let z(d) = b nd
2d+1

c.

Then

χc(Cn(d, 1)) =







n, if d ∈ [k − (1/2), k);
2d + 2, if d ∈ [ 2k−2

3
, k − (1/2));

n
2h−1

, if d ∈ [ k−h
2h−1

, k−h+1
2h−1

), h = 2, 3, · · · , bk+1
2
c;

n
k
, if d ∈ (0, 1/2];

nd
z(d)

, otherwise.

Proof. Let n = 2k + 1. If d ≥ k, then z(d) = k. So, the result for d ≥ k

and d ≤ 1/2 follows by Theorems 11 and 10, respectively. In the following,

assume 1/2 < d < k.

Let z(d) = b nd
2d+1

c = k−h. Assume χc(Cn(d, 1)) = p = 2d+1+r for some

0 ≤ r < 1. By Theorem 15, (a) 2d+1+r = n
2h−1

or (b) 2d+1+r = nd
z(d)

holds.

As r < 1, if (a) holds, then d > n
2(2h−1)

− 1; if (b) holds, then d < 2(k−h)
2h+1

.

Assume h = 1. By (3.1), one gets:

χc(Cn(d, 1)) =

{

n, if d ∈ (k − (1/2), k);
nd

z(d)
, if d ∈ [k−1

3
, 2(k−1)

3
).
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By Lemma 12, χc(Cn(d, 1)) = 2d + 2, if d ∈ [ 2(k−1)
3

, k − (1/2)]. If h ≥ 2,

functions (a) and (b) intersect at d = k−h
2h−1

. Moreover, (a) is greater than

(b), if k−h
2h−1

< d < k−h+1
2h−1

. Note that, as h ≥ 2, we have 2(k−h)
2h+1

≥ k−h+1
2h−1

and
n

2(2h−1)
− 1 ≤ k−h

2h−1
. By (3.1), the result follows.

Theorem 17

χc(C5(d, 1)) =







(5/2)d, if d ≥ 2;
5, if d ∈ [1, 2);
5d, if d ∈ (1/2, 1);
5/2, if 0 < d ≤ 1/2.

Proof. Note, χc(C5(d, 1)) ≥ min{5d, 5}, as C5(d, 1) is a complete graph,

so any circular coloring is one-to-one, and the separation between any two

consecutive labels must be at least min{d, 1}. Hence, the result follows by

Theorems 10 and 11, and the circular 5−coloring (0, 1, 2, 3, 4) and the circular

5d−coloring (0, d, 2d, 3d, 4d) for (v0, v1, v2, v3, v4), when d ∈ [1, 2) and d ∈

(1/2, 1), respectively.

Lemma 18 If 2 ≤ d ≤ 3 and χc(C7(d, 1)) < min{7, 3d}, then

χc(C7(d, 1)) ≥ (5/2)d + 1.

Proof. Assume 2 ≤ d ≤ 3 and χc(C7(d, 1)) = p < min{7, 3d}. Let f be a

circular p−coloring for C7(d, 1) with f(v0) = 0. For any i, because p < 3d,

so 1 ≤ |f(vi) − f(vi+2)|p < d, implying one of the following holds:

|f(vi+2) − f(vi−2)|p ≥ 2, or (3.3)

|f(vi+2) − f(vi−2)|p < d − 1. (3.4)

Assume for all i, (3.4) holds. So, |f(v2)−f(v5)|p < d−1. Without loss of

generality, we assume f(v2), f(v5) ∈ [1, d). By (3.4), |f(v6)− f(v2)|p < d− 1

and |f(v5) − f(v1)|p < d − 1, which is impossible as v6 ∼ v0 and v1 ∼ v0.

Hence, there exists some i such that (3.3) holds. By symmetry, we may

assume that i = 0, 1 ≤ f(v2) < d and p − d < f(v5) ≤ p − 1. Then
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f(v1), f(v6) ∈ (f(v2), f(v5)). If f(v1) < f(v6), then the ordering of the la-

bels of (v0, v2, v1, v6, v5) on Sp gives p ≥ 2d + 3 ≥ 7, a contradiction.

(Using only the sub-index i of each vi, we abbreviate the above contra-

diction by (0, 2, 1, 6, 5) ⇒ 2d + 3.) Hence, f(v6) < f(v1). So, the labels

0=f(v0) < f(v2) < f(v6) < f(v1) < f(v5) divide Sp into five intervals,

I1 = (f(v0), f(v2)), I2 = (f(v2), f(v6)), · · ·, and I5 = (f(v5), f(v0)). By

definition, f(v4) /∈ I5 and f(v3) /∈ I1.

Assume f(v4) ∈ I2. Because |f(v4) − f(v2)|p < d, |f(v6) − f(v4)|p < d,

and |f(v3) − f(v4)|p ≥ d, so f(v3) /∈ I2. If f(v3) ∈ I3, then (0, 2, 4, 3, 1) ⇒

2d + 3. If f(v3) ∈ I4, then (0, 2, 4, 6, 1, 3, 5) ⇒ 7. If f(v3) ∈ I5, then

(0, 2, 4, 6, 1, 5, 3) ⇒ 7. Therefore f(v4) /∈ I2. Symmetrically and similarly,

one can show that f(v3), f(v4) /∈ I4 and f(v3) /∈ I2. Note, it is impossible

that f(v3), f(v4) ∈ I3, as l(I3) < d.

By symmetry, it suffices to consider two cases: (1) f(v3) ∈ I5 and f(v4) ∈

I1; and (2) f(v3) ∈ I3 and f(v4) ∈ I1. Indeed, they are “identical.” In (1)

and (2), the orderings of the labels on Sp are, respectively (starting at v0 and

v6, respectively, and using only the sub-index i for each vi), (0, 4, 2, 6, 1, 5, 3)

and (6, 3, 1, 5, 0, 4, 2). By increasing each number in the latter case by 1, they

become identical.

It suffices to consider (2). Let l(f(v0), f(v4)) = x1 and l(f(v1), f(v5)) =

x2. Assume x2 ≥ x1 (the proof for x2 ≤ x1 is similar). Set l(f(v4), f(v2)) =

1+t1, l(f(v2), f(v3)) = d+t2, l(f(v3), f(v1)) = 1+t3, l(f(v5), f(v4)) = d+t4,

for some t1, t2, t3, t4 ≥ 0. Then, p = 2d + 2 + x2 + t1 + t2 + t3 + t4.

Because v0 ∼ v6, we have x1 + 1 + t1+ l(f(v2), f(v6)) ≥ d, implying

l(f(v2), f(v6)) ≥ d − x1 − 1 − t1. Similarly, because v6 ∼ v5, we have

l(f(v6), f(v3)) ≥ d − x2 − 1 − t3. Therefore, l(f(v2), f(v3)) = d + t2 ≥

2d− 2−x1 −x2 − t1 − t3. Because x2 ≥ x1, we conclude that x2 ≥ (d− 2)/2,

so p ≥ (5/2)d + 1.
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Theorem 19

χc(C7(d, 1)) =







(7/3)d, if d ≥ 3;
7, if 12/5 ≤ d ≤ 3;
(5/2)d + 1, if 2 ≤ d ≤ 12/5;
2d + 2, if 4/3 ≤ d ≤ 2;
(7/2)d, if 2/3 ≤ d ≤ 4/3;
7/3, if 0 < d ≤ 2/3.

Proof. The result follows by Lemmas 12, 18, Theorems 10, 11, 15, and the

circular (5
2
d + 1)−coloring (0, d, 2d, d

2
− 1, 3d

2
, d

2
, 3d

2
+ 1) for C7(d, 1), when

2 ≤ d ≤ 12/5.

Similar to Theorem 15 and Corollary 16, we obtain the following result

for even cycles. We leave the details to the reader.

Theorem 20 Let n = 2k, and for any real d > 1/2, let z(d) = b nd
2d+1

c =

k − h. Then χc(Cn(d, 1)) = min { nd
z(d)

, k
h−1

, 2d + 2}. Or equivalently,

χc(Cn(d, 1)) =







2d + 2, if d ≥ k − 1;
k
m

, if d ∈ [k−m−1
2m

, k−m
2m

), m = 1, 2, · · · , bk−1
2
c;

2, if k is even and d ∈ (0, 1/2];
2k

k−1
, if k is odd and d ∈ (0, 1/2];

nd
z(d)

, otherwise.

According to Lemma 2, we have determined the value of χc(Cn(d1, d2))

for any positive reals d1 and d2. A special case of interest is that when

d1 = d×d2 for some integer d, then it bounds to find the value of χc(Cn(d, 1)).

By Theorems 16, 17, 19, 20, and Corollary 16, we have:

Corollary 21 Let d and n be positive integers, n ≥ 3. Then

χc(Cn(d, 1)) = min{2d + 2,
nd

b nd
2d+1

c
}.

Corollary 21 implies that the value of χc(Cn(d, 1)), when d is an integer,

can be as close as possible to the lower bound dχc(Cn(d, 1))e − 1 (cf. (1.1)).
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Note that, if χc(Cn(d, 1)) = p < 2d + 2, then there exists a circular

p−coloring for Cn(d, 1) with a tight cycle that has all edges of the same

weight. (If n is odd, by the proof of Lemma 14, (v0, v1, v2, · · · , vn−1) or

(v0, v2, v4, · · · , vn−1, v1, v3, · · ·, vn−1) is a tight cycle; if n is even, then (v0, v1,

v2, · · · , vn−1) or (v0, v2, v4, · · · , vn−2) is a tight cycle.) This is not the case,

however, when χc(Cn(d, 1)) ≥ 2d + 2. For instance, consider C7(d, 1) with

2 ≤ d ≤ 12/5, it is impossible to get a circular p−coloring, p = (5/2)d + 1,

with a tight cycle that has all edges of the same weight. Indeed, one can get

a circular p−coloring with the tight cycle (v0, v1, v2, v3, v5, v4, v6) of winding

number 2.
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