Topic 4Limits

Def: Let $f: A \rightarrow \mathbb{C}$ where $A \subseteq \mathbb{C}$. Let $z_{0} \in \mathbb{C}$ where $D^{*}\left(z_{0 j} r\right) \subseteq A$ for some $r>0 \quad[$ that is, f is defined on some deleted r-neighborhood of $\left.z_{0}\right]$. We say that f has limit L as z approaches z_{0}, and write $\lim _{z \rightarrow z_{0}} f(z)=L$, if for every $\varepsilon>0$ there exists $\delta>0$ such that if $z \in A$ and

Theorem: If $L_{1}=\lim _{z \rightarrow z_{0}} f(z)$
and $L_{2}=\lim _{z \rightarrow z_{0}} f(z)$, then $L_{1}=L_{2}$.
Pf: HW.

Theorem: Suppose $A \subseteq \mathbb{C}$ and $z_{0} \in \mathbb{C}$ with $D^{*}\left(z_{0 j} r\right) \subseteq A$ for Some $r>0$. Suppose $f: A \rightarrow \mathbb{C} \quad A$ and $g: A \rightarrow \mathbb{C}$.
Suppose $\lim _{z \rightarrow z_{0}} f(z)=F$
and $\lim _{z \rightarrow z_{0}} g(z)=G$.
Then: \quad (1) $\lim _{z \rightarrow z_{0}}[f(z)+g(z)]=F+G$
(3) $\lim _{z \rightarrow z_{0}} f(z) g(z)=F G$
(2) $\lim _{z \rightarrow z_{0}} \alpha f(z)$
(4) $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{F}{G}$

$$
=\alpha F
$$

where
if $G \neq 0$

$$
\begin{aligned}
& \text { here } \\
& \alpha \in \mathbb{C}
\end{aligned}
$$

pf (1)/(2):
Let's show

$$
\text { et's show } \lim _{z \rightarrow z_{0}} \alpha f(z)+\beta g(z)=\alpha F+\beta G
$$

if $\alpha, \beta \in \mathbb{C}$.
Let $\varepsilon>0$.

$$
\begin{aligned}
& \begin{array}{l}
\text { Note that } \\
|\alpha f(z)+\beta g(z)-(\alpha F+\beta G)|
\end{array} \\
& \begin{array}{l}
f(z)+\beta g(z)-\alpha f(z)-\alpha F+\beta g(z)-\beta G \mid \\
=\mid \alpha f(z g(z)-\beta
\end{array} \\
& \begin{array}{l}
=|\alpha f(z)-\alpha F+\beta g(z)-\beta G|+|\beta g(z)-\beta G| \\
\leq|\alpha f(z)-\alpha F|+|\beta||g(z)-G|
\end{array} \\
& \begin{array}{l}
\leq|\alpha f(z)-\alpha F|+|\beta g(z)-\beta G| \\
=|\alpha||f(z)-F|+|\beta| \underbrace{|g(z)-G|}
\end{array} \\
& \text { Note that } \\
& \begin{array}{l}
\text { I want to do } \\
\text { something like this }
\end{array} \\
& \begin{array}{l}
\text { cancontrol how } \\
\text { small these are }
\end{array} \\
& \frac{\text { something like this } \quad \text { cancel these are }}{\langle | \alpha\left|\frac{\varepsilon}{2|\alpha|}+|\beta| \frac{\varepsilon}{2|\beta|}=\varepsilon\right.} \in \text { This idea } \\
& \text { wont if } \\
& \begin{array}{cc}
\\
\alpha & \text { or } \\
\text { is } & \beta \\
\hline
\end{array} \\
& \leqslant(|\alpha|+\mid)|f(z)-F|+(|\beta|+1)|g(z)-G|
\end{aligned}
$$

Since $\lim _{z \rightarrow z_{0}} f(z)=F$, there exists
$\delta_{1}>0$ where if $z \in A$ and $0<\left|z-z_{0}\right|<\delta_{1}$ then $|f(z)-F|<\frac{\varepsilon}{2(|\alpha|+1)}$

Since $\lim _{z \rightarrow z_{0}} g(z)=G$, there exists
$\delta_{2}>0$ where if $z \in A$ and $0<\left|z-z_{0}\right|<\delta_{2}$ then $|g(z)-G|<\frac{\varepsilon}{2(|\beta|+1)}$.
So, if $z \in A$ and $0<\left|z-z_{0}\right|<\underbrace{\min \left\{\delta_{1}, \delta_{2}\right\}}_{\text {minimum }}$
Si mum of δ_{2} then

$$
\begin{aligned}
& \text { then } \\
& \begin{array}{l}
|\alpha f(z)+\beta g(z)-(\alpha F+\beta G)| \\
\leqslant(|\alpha|+1)|f(z)-F|+(|\beta|+1)|g(z)-G| \\
<(|\alpha|+1) \frac{\varepsilon}{2(|\alpha|+1)}+(|\beta|+1) \frac{\varepsilon}{\alpha(|\beta|+1)} \\
=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . \quad \text { So, } \lim _{z \rightarrow z_{0}}(\alpha f(z)+\beta g(z)) \\
=\alpha F+\beta G_{1}
\end{array}
\end{aligned}
$$

Note: Suppose $f: A \rightarrow \mathbb{C}$
where $A \subseteq \mathbb{C}$. Let $z \in A$ and $z=x+i y$.
Can think in two ways:

We will sometimes go back and forth.
So we can write

$$
\begin{aligned}
f(z) & =f(x+i y)=f(x, y) \\
& =u(x, y)+i v(x, y)
\end{aligned}
$$

where $u, v: A \rightarrow \mathbb{R}^{2}$
where here we think $A \subseteq \mathbb{R}^{2}$

Ex: Let $f(z)=z^{2}$.
If $z=x+i y$, then

$$
\begin{aligned}
\text { If } z & =x+i y \\
f(z)=f(x+i y) & =(x+i y)^{2} \\
& =\underbrace{\left(x^{2}-y^{2}\right)}_{u(x, y)=x^{2}-y^{2}}+i \underbrace{2 x(x, y)=2 x y}
\end{aligned}
$$

low and done prove next theorem and
*Maybe skip this def below and don prove next post per oof online
Calk III limits (Kind-of)
Let $g: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}^{2}$.
Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ where $D^{*}\left(\left(x_{0}, y_{0}\right) ; r\right) \subseteq A$ for some $r>0$.

We say that $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=L$
If for every $\varepsilon>0$ there exists $\delta>0$ such that if

$$
\begin{aligned}
& \delta>0 \text { such that } \\
& 0<\underbrace{\left|(x, y)-\left(x_{0}, y_{0}\right)\right|}_{<}<\delta \\
& \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}
\end{aligned}
$$

then $|g(x, y)-L|<\varepsilon$

Theorem: Suppose $A \subseteq \mathbb{C}$ and
$\overline{z_{0} \in \mathbb{C}}$ and $D^{*}\left(z_{0} ; r\right) \subseteq A$ for some $r>0$.
Suppose $f(z)=f(x+i y)=u(x, y)+i v(x, y)$.
Let $z_{0}=x_{0}+i y_{0}$ and $\omega_{0}=u_{0}+i v_{0}$.
Then:
(1) $\left.\lim _{z \rightarrow z_{0}} f(z)=\lim _{x+i y \rightarrow x_{0}+i y_{0}} f(z)=u_{0}+i v_{0}\right]$
if and only if

$$
\begin{aligned}
& \text { (2) } \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=V_{0} . \\
& \hline \frac{E x:}{\lim _{z \rightarrow 1+i} z^{2}=\lim _{x+i y \rightarrow 1+i}\left[\left(x^{2}-y^{2}\right)+i 2 x y\right] \quad \begin{array}{l}
x+i y=1+i \\
(x, y)=(1,1)
\end{array}} \\
& =\lim _{(x, y) \rightarrow(1,1)}\left[x^{2}-y^{2}\right]+i \lim _{(x, y) \rightarrow(1,1)}[2 x y] \\
& =\left[1^{2}-1^{2}\right]+i[2(1)(1)]=2 i
\end{aligned}
$$

proof: You can try $(1) \Rightarrow(2)$.
(2) \Rightarrow (1)

Let $\varepsilon>0$.

So there exist $\delta_{1}>0$ so that if

$$
\begin{aligned}
& \text { there exist } \delta_{1}>0 \text { so that } \\
& 0<\underbrace{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta_{1}}_{0<\left|(x, y)-\left(x_{0}, y_{0}\right)\right|} \text { and }(x, y) \in A
\end{aligned}
$$

then $\left|u(x, y)-u_{0}\right|<\frac{\varepsilon}{2}$
And there exists $\delta_{2}>0$ so that if

$$
\begin{aligned}
& \text { ad there exists } \delta_{2}>0 \text { so } \\
& 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta_{2} \text { and }(x, y) \in A
\end{aligned}
$$

then $\left|v(x, y)-v_{0}\right|<\frac{\varepsilon}{2}$.
Note: \mathbb{R}^{2}

$$
\begin{aligned}
& \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \\
= & \left|(x, y)-\left(x_{0}, y_{0}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \\
& =\left|z-z_{0}\right| \\
& z=x+i y, z_{0}=x_{0}+i y_{0}
\end{aligned}
$$

So if $z \in A$ and $0<\left|z-z_{0}\right|<\min \left\{\delta_{1}, \delta_{2}\right\}$ then

$$
\begin{aligned}
& \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \\
& \left|f(x, y)-\left(u_{0}+i v_{0}\right)\right| \\
& =\left|u(x, y)+i v(x, y)-u_{0}-i v_{0}\right| \\
& =\left|\left(u(x, y)-u_{0}\right)+i\left(v(x, y)-v_{0}\right)\right| \\
& \leq\left|u(x, y)-u_{0}\right|+\left|i\left(v(x, y)-v_{0}\right)\right| \\
& =\left|u(x, y)-u_{0}\right|+\underbrace{1}_{1}| | v(x, y)-v_{0} \mid \\
& =\left|u(x, y)-u_{0}\right|+\left|v(x, y)-v_{0}\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \quad \operatorname{Sos}_{0}, \lim _{z \rightarrow z} f(z)=u_{0}+i v_{0}
\end{aligned}
$$

Continuity
Def: Let $A \subseteq \mathbb{C}$ where A is an open set and $f: A \rightarrow \mathbb{C}$.
We say that f is continuous at $z_{0} \in A$ if $\lim _{z \rightarrow z_{0}} f(z)$ exists and $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$.
We say that f is continuous on A if f is continuous at all z_{0} in A.

Ex: $f(z)=z^{2}$ and $z_{0}=2-i$

$$
\begin{aligned}
& \text { Ex: } f(z)=z \\
& \text { Let } z=x+i y . \\
& \lim _{z \rightarrow 2-i} z^{2}=\lim _{x+i y-7}^{x-i}(x+i y)^{2}=\lim _{\substack{x+i y \rightarrow \\
2-i}}\left[\left(x^{2}-y^{2}\right)+i 2 x y\right] \\
&={ }^{(\text {next page) })}
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\lim _{(x, y) \rightarrow(2,-1)}\left(x^{2}-y^{2}\right)}_{\mathbb{R}^{2} \text { limit }}+\underbrace{i \lim _{(x, y) \rightarrow(2,-1)} 2 x y}_{\mathbb{R}^{2} \text { limit }} \\
& =\left(2^{2}-(-1)^{2}\right)+i(2(2)(-1)) \\
& \text { Call III } \\
& =3-4 i \\
& \text { or } \\
& \text { aNalysis } \\
& x^{2}-y^{2} \text { and } \\
& 2 x y \text { are } \\
& \text { continuous } \\
& \begin{aligned}
\text { And } f(2-i) & =(2-i)^{2} \\
& =4-4 i+
\end{aligned} \\
& \begin{array}{l}
=(2-\lambda) \\
=4-4 i+i^{2} \\
=3-4 i
\end{array} \\
& =3-4 i \\
& \text { And }
\end{aligned}
$$

So, $\lim _{z \rightarrow 2-i} z^{2}=(2-i)^{2}$
So, z^{2} is continuous at $2-i$

Corollary (to previous the on limits):
Suppose that $f: A \rightarrow \mathbb{C}$ where A is open. Let $f(x+i y)=u(x, y)+i v(x, y)$ and $z_{0}=x_{0}+i y_{0} \in A$,
Then f is continuous at z_{0} iff both $u(x, y)$ and $v(x, y)$ are continuous at $\left(x_{0}, y_{0}\right)$
[here the u \& v continuity are the \mathbb{R}^{2} continuous def
ex: $z^{2}=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i 2 x y$
$x^{2}-y^{2}$ and $2 x y$ ane continuous on all of \mathbb{R}^{2}
So, z^{2} is continuous on all of \mathbb{C}

Theorem: Let $A \subseteq \mathbb{C}$ where A is open and $f: A \rightarrow \mathbb{C}$ and $g: A \rightarrow \mathbb{C}$.
Let $z_{0} \in A$. Suppose f and g are both continuous at z_{0}.
Then $f+g, f-g, \alpha f$, and $f g$ are all continuous at z_{0}. Here $\alpha \in \mathbb{C}$. If $g\left(z_{0}\right) \neq 0$, then $\frac{f}{g}$ is continuous at z_{0}.
pf: This follows from the theorem from last week. For example since $f \& g$ are continuous at z_{0} we have $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$ and

$$
\begin{aligned}
& z \rightarrow z_{0} \quad \text { So, } \\
& \lim _{z \rightarrow z_{0}} g(z)=g\left(z_{0}\right) \text {. } \\
& \lim _{z \rightarrow z_{0}}(f g)(z)=\left(\lim _{p \rightarrow z_{0}} f(z)\right) \cdot\left(\lim _{z \rightarrow z_{0}} g(z)\right)=f\left(z_{0} \mid g\left(z_{0}\right)\right. \\
& =(f g)\left(z_{0}\right) \\
& \text { last week } \quad \text { so, is continuous }
\end{aligned}
$$

last week at z_{0}

Thu: Suppose that $\lim _{z \rightarrow z_{0}} f(z)=L$
Where f is defined on a deleted neighborhood of z_{0}. Suppose h is defined on an open set B containing L, and h is continuous at L.

Then, $\lim _{z \rightarrow z_{0}} h(f(z))=h\left(\lim _{z \rightarrow z_{0}} f(z)\right)$

$$
=h(L)
$$

pf on next page
$p f:$ Let $\varepsilon>0$.

$$
\lim _{\omega \rightarrow L} h(\omega)=h(L)
$$

Since h is continuous at L, there exists $\delta_{1}>0$ where if $\omega \in B$ and

$$
\begin{aligned}
& \delta_{1}>0 \text { where if } w \in B \text { and } \\
& |w-L|<\delta_{1} \text { then }|h(w)-h(L)|<\varepsilon
\end{aligned}
$$

$[$ To make it simpler since B is open you can make it so $D\left(L ; \delta_{1}\right) \subseteq B$ if you want
Since $\lim _{z \rightarrow z_{0}} f(z)=L$, there exists $\delta>0$
so that if $0<\left|z-z_{0}\right|<\delta$ then

$$
|f(z)-L|<\delta_{1}
$$

So, if $0<\left|z-z_{0}\right|<\delta$ then $|h(\underbrace{f(z)}_{w})-h(L)|<\varepsilon$.
So, $\lim _{z \rightarrow z_{0}} h(f(z))=h(L)$.
(Corollary to previous theorem)
Thu: Let $f: A \rightarrow \mathbb{C}$ where A is open and $z_{0} \in A$. Let $h: B \rightarrow \mathbb{C}$ where B is open and $f\left(z_{0}\right) \in B$. If f is continuous at z_{0} and h is continuous at $f\left(z_{0}\right)$, then hof is continuous at z_{0}.

proof:

$$
\begin{aligned}
& \text { Proof: } \\
& \lim _{z \rightarrow z_{0}}(h \circ f)(z)=\lim _{z \rightarrow z_{0}} h(f(z)) \\
& =h\left(\lim _{z \rightarrow z_{0}} f(z)\right) \xlongequal{\bar{f}} h\left(f\left(z_{0}\right)\right) \\
& \text { is continuous }=(h
\end{aligned}
$$

