TopIc 1
Complex Numbers

Complex Numbers
Def: We define the number i to be a root of the equation $x^{2}+1=0$. That is, $i^{2}=-1$.
The set of complex numbers, denoted by \mathbb{E}, is defined to be

$$
\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\}
$$

Given $z=x+i y$ we call x the real part of z and y the imaginary part of z.
we write $\operatorname{Re}(z)=x$ $\operatorname{Im}(z)=y$

Adding and multiplying in \mathbb{C} is defined by

$$
\begin{aligned}
& (x+i y)+(a+i b) \\
& \quad=(x+a)+i(y+b)
\end{aligned}
$$

and

$$
\begin{aligned}
& (x+i y)(a+i b) \\
& =x a+x i b+i y a+i^{-2} y b \\
& =(x a-y b)+i(x b+y a) \\
& \begin{array}{l}
i^{2}=-1 \\
E x:\left(\frac{1}{2}-i\right)+(2+10 i)=\frac{5}{2}+9 i \\
(2-i)(1+i)=2+2 i-i-i^{2} \\
\left.i^{2}=-1\right)
\end{array}=2+i+1=3+i
\end{aligned}
$$

One may think of addition in \mathbb{C} as vector a addition.

Def: Let $z=x+i y$
be a complex number.
The norm or absolute value of z is the distance between O and Z. The norm is denoted by $|z|$.

$$
\begin{aligned}
& |x|^{2}+|y|^{2}=|z|^{2} \\
& {[x, y \in \mathbb{R}]}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x, y \in \mathbb{R} \\
|x|= \pm x
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
|x|= \pm x \\
|y|= \pm y
\end{array}\right\}
$$

$$
x^{2}+y^{2}=|z|^{2}
$$

so, $|z|=\sqrt{x^{2}+y^{2}}$
Ex: $|1+i|=\sqrt{1^{2}+1^{2}}$

$$
=\sqrt{2}
$$

Def: Let $z=x+i y$
be a complex number.
The conjugate of z, denoted by \bar{z}, is defined to be $\bar{z}=x-i y$.

Ex:

$$
\begin{aligned}
& \frac{L x_{0}}{z=-3=-3+0 i} \\
& \bar{z}=-3 \\
& z=-3=\bar{z} \\
& \longleftrightarrow+1
\end{aligned}
$$

Division in \mathbb{C}
To simplify $\frac{z}{\omega} \quad\left(\right.$ where $\left.\begin{array}{c}z, w \in \mathbb{C} \\ \omega \neq 0\end{array}\right)$
into to form $a+b i$ then
multiply by $\frac{\bar{\omega}}{\bar{\omega}}$.

$$
\left\{\begin{aligned}
& \text { Idea: } w=x+i y \\
& w \bar{w}=(x+i y)(x-i y) \\
&=x^{2}+y^{2}
\end{aligned}\right.
$$ which is

$E x:$

$$
\begin{aligned}
\frac{t+i}{3-2 i} & =\left(\frac{2+i}{3-2 i}\right)\left(\frac{3+2 i}{3+2 i}\right) \\
& =\frac{6+4 i+3 i+2 i^{2}}{9+6 i-6 i-4 i^{2}} \\
& =\frac{4+7 i}{13} \\
& =\frac{4}{13}+\frac{7}{13} i
\end{aligned}
$$

Polar form of a complex number

Let

$$
r=|z|
$$

Consider the ray that stats at 0 and ends at z.

Let θ be the angle that this ray makes with positive x-axis.
If $z=x+i y$, then by trig
$x=r \cos (\theta)$ and $y=r \sin (\theta)$,
So, $z=r \cos (\theta)+i r \sin (\theta)$

$$
\begin{aligned}
& =r \cos (\theta)+i r \cos (\theta)+i \sin (\theta)] \\
& =r[
\end{aligned}
$$

This is called the polar form of z.
θ is called an argument of z and we write $\theta=\arg (z)$.

Ex: $z=1+i$

$$
\begin{aligned}
r=|1+i| & =\sqrt{1^{2}+1^{2}} \\
& =\sqrt{2}
\end{aligned}
$$

$$
\theta=\frac{\pi}{4}
$$

$$
z=\sqrt{2}\left[\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right]
$$

verify: $\sqrt{2}\left[\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right]$

$$
\begin{aligned}
& \underline{\text { Verify: }} \sqrt{2}[\cos \\
&= \sqrt{2}\left[\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right]=1+i \\
& \arg (1+i)=\frac{\pi}{4}+2 \pi k, k=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

$\operatorname{ang}(z)$ is a multi-valued function

Note that $\arg (z)$ is a multivalued function.
We can pick any 2π-range that makes it into a function.
This is called choosing a branch of arg.

Ex: If we choose the branch of and to be $[0,2 \pi]$, that is $0 \leq \arg (z)<2 \pi$, then

$$
\begin{aligned}
& \arg (1+i)=\frac{\pi}{4} \\
& \arg (-1)=\pi
\end{aligned}
$$

Ex: If we choose the branch of any to be $(3 \pi, 5 \pi]$, that is $3 \pi<\operatorname{ang}(z) \leqslant 5 \pi$.

$$
\begin{aligned}
& \arg (1+i)=17 \pi / 4 \\
& \arg (-1)=5 \pi
\end{aligned}
$$

Proposition: Let $z, w \in \mathbb{C}$. Then: (10)
(1) $\overline{z+w}=\bar{z}+\bar{w}$
(2) $\overline{z w}=\bar{z} \bar{w}$
(3) $\overline{\left(\frac{z}{\omega}\right)}=\frac{\bar{z}}{\bar{\omega}}$ if $\omega \neq 0$
(4) $|z|^{2}=z \bar{z} \quad$ (or $\left.\quad|z|=\sqrt{z \bar{z}}\right)$
(5) $z=\bar{z}$ iff z is real
(6) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(7) $\overline{\bar{z}}=z$
(8) $|z w|=|z||w|$
(9) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$ if $w \neq 0$
(10) $|\bar{z}|=|z|$
(11) $\operatorname{Re}(z) \leq|\operatorname{Re}(z)| \leq|z|$

13
$\operatorname{Im}(z) \leq|\operatorname{Im}(z)| \leq|z|$
$|z-\omega| \geqslant||z|-|\omega||$
(12) $|z+w| \leqslant|z|+|w|$
$\binom{$ triangle }{ inequality }
proof: We will prove (11)-(14).

Proof of (11):
We have that

$$
\begin{aligned}
& \operatorname{Re}(z) \leqslant|\operatorname{Re}(z)|=\sqrt{(\operatorname{Re}(z))^{2}} \\
& \operatorname{Re}(z) \in \mathbb{R} \\
& \leq \sqrt{(\operatorname{Re}(z))^{2}+(\operatorname{Im}(z))^{2}} \\
& =|z|
\end{aligned}
$$

Similarles,

$$
\begin{aligned}
& \text { Similarles, } \\
& \begin{aligned}
\operatorname{Im}(z) \leq|\operatorname{Im}(z)|=\sqrt{(\operatorname{Im}(z))^{2}} & \leq \sqrt{(\operatorname{Re}(z))^{2}+(\operatorname{Im}(z))^{2}} \\
& =|z|
\end{aligned} .
\end{aligned}
$$

proof of (12)
We have that

$$
\begin{aligned}
& |z+w|^{2} \xlongequal{(4)}(z+w)(\overline{z+w}) \\
& \text { (1) }(z+w)(\bar{z}+\bar{w}) \\
& =z \bar{z}+z \bar{w}+w \bar{z}+w \bar{w} \\
& \stackrel{(2)(9)}{=} z \bar{z}+(z \bar{\omega}+\overline{z \bar{w}})+w \bar{\omega} \\
& \text { (6) } z \bar{z}+2 \operatorname{Re}(z \bar{w})+w \bar{w} \\
& \stackrel{(4)}{=}|z|^{2}+2 \operatorname{Re}(z \bar{\omega})+|w|^{2} \\
& \text { (1i) } \leq|z|^{2}+2|z \bar{w}|+|w|^{2} \\
& \stackrel{(8)}{=}|z|^{2}+2|z||\bar{w}|+|w|^{2} \\
& \stackrel{(10)}{=}|z|^{2}+2|z||w|+|w|^{2} \\
& =(|z|+|w|)^{2} \text {. }
\end{aligned}
$$

So, $|z+w|^{2} \leq(|z|+|w|)^{2}$. Thus, $|z+w| \leqslant|z|+|w|$.
proof of $(13)(|z+w| \geqslant||z|-|w||)$
If $a, b \in \mathbb{C}$, then

$$
\begin{aligned}
& \text { If } a, b \in \mathbb{C} \text {, then } \\
& |a|=|a+b-b| \stackrel{(12)}{\leftrightarrows}|a+b|+|-b|=|a+b|+|b|
\end{aligned}
$$

So, $\sqrt[|a|-|b| \leqslant|a+b|]{\mid-*)}$
Now back to the proof, Let $z, w \in \mathbb{C}$.
case i : Suppose $|z| \geqslant|w|$.
Then $|z|-|w| \geqslant 0$.
So, $||z|-|w||=|z|-|w|$.
In (*) set $a=z$ and $b=w$.
we get $|z|-|w| \leqslant|z+w|$.
Now use $||z|-|w||=|z|-|w|$ to get

$$
||z|-|w|| \leqslant|z+w|
$$

case ii Suppose $|\omega|>|z|$.
Then $|w|-|z|>0$.
So,

$$
\begin{aligned}
||z|-|w|| & =|-(|z|-|w|)| \\
& =|\underbrace{|w|-|z|}_{>0}| \\
& =|w|-|z|
\end{aligned}
$$

Now set $a=w$ and $b=z$ in (*) and get

$$
|w|-|z| \leqq|w+z|
$$

Combine to get

$$
\begin{aligned}
& \text { Combine to } \\
& \qquad \begin{aligned}
||z|-|w|| & =|w|-|z| \\
& \leq|w+z|
\end{aligned}
\end{aligned}
$$

Last time we finished the proof of Prop part (13) which was $|z+w| \geqslant||z|-|w||$.
The proof of (14) is

So,

$$
|z-w| \geqslant||z|-|w||
$$

Prop (11)-(14) done

De Moire's Formula
If $z=r[\cos (\theta)+i \sin (\theta)]$ and n is a positive integer then $z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]$.

The: Let $\omega=r[\cos (\theta)+i \sin (\theta)]$ where $\omega \neq 0$. The solutions to

$$
z^{n}=w
$$

$$
\begin{aligned}
& \text { are given by } \\
& z_{k}=r^{1 / n}\left[\cos \left(\frac{\theta}{n}+\frac{2 \pi k}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi k}{n}\right)\right] \\
& k=0,1,2, \ldots 0, n-1
\end{aligned}
$$

The proofs of these are in How 1. It's optional if you want to do these proofs.

Ex: Find the solutions to $z^{3}=-8$

$$
\begin{aligned}
& \omega=-8 \\
& =8[\cos (\pi)+i \sin (\pi)] \\
& n=3 \\
& z_{k}=8^{1 / 3}\left[\cos \left(\frac{\pi}{3}+\frac{2 \pi k}{3}\right)+i \sin \left(\frac{\pi}{3}+\frac{2 \pi k}{3}\right)\right] \\
& k=0,1,2 \\
& z_{0}=2\left[\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right]=2\left[\frac{1}{2}+i \frac{\sqrt{3}}{2}\right]=1+i \sqrt{3} \\
& z_{1}=2\left[\cos \left(\frac{\pi}{3}+\frac{2 \pi}{3}\right)+i \sin \left(\frac{\pi}{3}+\frac{2 \pi}{3}\right)\right]=-2 \\
& z_{2}=2\left[\cos \left(\frac{\pi}{3}+2 \cdot \frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}+2 \cdot \frac{2 \pi}{3}\right)\right]= \\
& =2\left[\frac{1}{2}-i \frac{\sqrt{3}}{2}\right) \\
& =1-i \sqrt{3} \\
& \text { Answers: } \\
& z=-2,1 \pm i \sqrt{3}
\end{aligned}
$$

Note:
Let $z, z_{0} \in \mathbb{C}$. Then $\left|z-z_{0}\right|$ is the distance between $z \& z_{0}$.
Reason: $z=x+i y, z_{0}=a+i b$

$$
\begin{aligned}
\left|z-z_{0}\right| & =|x+i y-a-i b| \\
& =\mid(x-a|+i(y-b)| \\
& =\sqrt{(x-a)^{2}+(y-b)^{2}}
\end{aligned} \leftarrow\left[\begin{array}{l}
\text { distance } \\
\text { between } \\
(x, y) \\
(a, b)
\end{array}\right]
$$

So in $\mathbb{C},\left|z-z_{0}\right|$ is the
distance between $z=x+i y$ and $z_{0}=a+i b$

Do some HW problems.

